Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Frlez is active.

Publication


Featured researches published by E. Frlez.


Physical Review D | 1998

Measurements of the Proton and Deuteron Spin Structure Functions g1 and g2

K. Abe; T. Akagi; P.L. Anthony; R. Antonov; R.G. Arnold; T. Averett; H. R. Band; J. M. Bauer; H. Borel; P. Bosted; Vincent Breton; J. Button-Shafer; J. P. Chen; T. E. Chupp; J. Clendenin; C. Comptour; K.P. Coulter; D. Crabb; M. Daoudi; F. S. Dietrich; J. Dunne; H. Dutz; R. Erbacher; J. Fellbaum; A. Feltham; H. Fonvieille; E. Frlez; D. Garvey; R. Gearhart; J. Gomez

Measurements are reported of the proton and deuteron spin structure functions g1 at beam energies of 29.1, 16.2, and 9.7 GeV and g2 at a beam energy of 29.1 GeV. The integrals of g1 over x have been evaluated at fixed Q**2 = 3 (GeV/c)**2 using the full data set. The Q**2 dependence of the ratio g1/F1 was studied and found to be small for Q**2>1 (GeV/c)**2. Within experimental precision the g2 data are well-described by the Wandzura-Wilczek twist-2 contribution. Twist-3 matrix elements were extracted and compared to theoretical predictions. The asymmetry A2 was measured and found to be significantly smaller than the positivity limit for both proton and deuteron targets. A2 for the proton is found to be positive and inconsistent with zero. Measurements of g1 in the resonance region show strong variations with x and Q**2, consistent with resonant amplitudes extracted from unpolarized data. These data allow us to study the Q**2 dependence of the first moments of g1 below the scaling region.


Physics Letters B | 2000

Measurements of the Q**2 dependence of the proton and neutron spin structure functions g(1)**p and g(1)**n

P.L. Anthony; R.G. Arnold; Todd Averett; H. R. Band; M.C. Berisso; H. Borel; P. Bosted; S.L. Bültmann; M. Buenerd; T. E. Chupp; S. Churchwell; G.R. Court; D. Crabb; D. Day; P. Decowski; P. DePietro; R. Erbacher; R. Erickson; A. Feltham; H. Fonvieille; E. Frlez; R. Gearhart; V. Ghazikhanian; J. Gomez; K. A. Griffioen; C. Harris; M. Houlden; E.W. Hughes; C.E Hyde-Wright; G. Igo

Abstract The ratio g 1 F 1 has been measured over the range 0.03 g 1 F 1 to be consistent with no Q2-dependence at fixed x in the deep-inelastic region Q2 > 1 (GeV/c)2. A trend is observed for g 1 F 1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g 1 F 1 are in agreement with the Bjorken sum rule, but Δq is substantially less than the quark-parton model expectation.


Physical Review Letters | 1996

Measurements of the Proton and Deuteron Spin Structure Function g2 and Asymmetry A2

K. Abe; C. C. Young; J. McCarthy; L. C. Smith; W. Meyer; R. Prepost; R.G. Arnold; T. Averett; D. Kawall; A. Rijllart; E. Frlez; T. E. Chupp; P. Bosted; C. Comptour; T. Maruyama; H. Borel; M. Kuriki; O. Rondon-Aramayo; S. St. Lorant; T. J. Liu; Y. Terrien; T. Usher; Jianping Chen; R. Pitthan; Y. Roblin; C. Prescott; K. A. Griffioen; F. Suekane; F. Staley; P. Raines

We have measured proton and deuteron virtual photon-nucleon asymmetries A2p and A2d and structure functions g2p and g2d over the range 0.03<x<0.8 and 1.3<Q2<10 (GeV/c)2 by inelastically scattering polarized electrons off polarized ammonia targets. Results for A2 are significantly smaller than the positivity limit sqrt(R) for both targets. Within experimental precision, the g2 data are well-described by the twist-2 contribution g2WW. Twist-3 matrix elements have been extracted and are compared to theorectical predictions.


Physics Letters B | 1999

Measurement of the deuteron spin structure function g1d(x) for 1 (GeV/c)2 < Q2 < 40 (GeV/c)2

P.L. Anthony; R.G. Arnold; Todd Averett; H. R. Band; M.C. Berisso; H. Borel; P. Bosted; S.L. Bültmann; M. Buenerd; T. E. Chupp; S. Churchwell; G.R. Court; D. Crabb; D. Day; P. Decowski; P. DePietro; R. Erbacher; R. Erickson; A. Feltham; H. Fonvieille; E. Frlez; R. Gearhart; V. Ghazikhanian; J. Gomez; K. A. Griffioen; C. Harris; M. Houlden; E.W. Hughes; Charles Hyde-Wright; G. Igo

New measurements are reported on the deuteron spin structure function g_1^d. These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01<x<0.9 and 1<Q^2<40 (GeV/c)^2. These are the first high dose electron scattering data obtained using lithium deuteride (6Li2H) as the target material. Extrapolations of the data were performed to obtain moments of g_1^d, including Gamma_1^d, and the net quark polarization Delta Sigma.Abstract New measurements are reported on the deuteron spin structure function g1d. These results were obtained from deep inelastic scattering of 48.3 GeV electrons on polarized deuterons in the kinematic range 0.01 6 Li 2 H) as the target material. Extrapolations of the data were performed to obtain moments of g1d, including Γ1d, and the net quark polarization ΔΣ.


Physics Letters B | 1999

Measurements of R = σL/σT for 0.03 < x < 0.1 and Fit to World Data

R. Pitthan; R. Prepost; P. Grenier; M. Kuriki; H. Tang; F. Suekane; Y. Terrien; C. Prescott; R.M. Lombard-Nelsen; A. Klein; J. M. Bauer; J. Morgenstern; G. Zapalac; H. R. Band; Z.E. Meziani; F. Staley; B. Zihlmann; Z. M. Szalata; S. St. Lorant; S. Hoibraten; O. Rondon; P. Bosted; I. Sick; D. Zimmermann; J. Marroncle; E.W. Hughes; H. Yuta; G.G. Petratos; L.M. Stuart; C. Comptour

Abstract Measurements were made at SLAC of the cross section for scattering 29 GeV electrons from carbon at a laboratory angle of 4.5°, corresponding to 0.03Measurements were made at SLAC of the cross section for scattering 29 GeV electrons from carbon at a laboratory angle of 4.5 degrees, corresponding to 0.03<x<0.1 and 1.3<Q^2<2.7 GeV^2. Values of R=sigma_L/sigma_T were extracted in this kinematic range by comparing these data to cross sections measured at a higher beam energy by the NMC collaboration. The results are in reasonable agreement with pQCD calculations and with extrapolations of the R1990 parameterization of previous data. A new fit is made including these data and other recent results.


Physics Letters B | 2003

Precision measurement of the proton and deuteron spin structure functions g2 and asymmetries A2

P.L. Anthony; R.G. Arnold; T. Averett; H. R. Band; N. Benmouna; W. Boeglin; H. Borel; P. Bosted; S.L. Bültmann; G.R. Court; D. Crabb; D. Day; P. Decowski; P. DePietro; H. Egiyan; R. Erbacher; R. Erickson; R. Fatemi; E. Frlez; K. A. Griffioen; C. Harris; E. W. Hughes; C. E. Hyde-Wright; G. Igo; J. Johnson; P. King; K. Kramer; S. E. Kuhn; D. Lawrence; Y. Liang

We have measured the spin structure functions g{sub 2}{sup p} and g{sub 2}{sup d} and the virtual photon asymmetries A{sub 2}{sup p} and A{sub 2}{sup d} over the kinematic range 0.02 {le} x {le} 0.8 and 0.7 {le} Q{sup 2} {le} 20 GeV{sup 2} by scattering 29.1 and 32.3 GeV longitudinally polarized electrons from transversely polarized NH{sub 3} and {sup 6}LiD targets. Our measured g{sub 2} approximately follows the twist-2 Wandzura-Wilczek calculation. The twist-3 reduced matrix elements d{sub 2}{sup p} and d{sub 2}{sup n} are less than two standard deviations from zero. The data are inconsistent with the Burkhardt-Cottingham sum rule if there is no pathological behavior as x {yields} 0. The Efremov-Leader-Teryaev integral is consistent with zero within our measured kinematic range. The absolute value of A{sub 2} is significantly smaller than the A{sub 2} < {radical}(R(1+A{sub 1})/2) limit.


Physical Review Letters | 2004

Precise measurement of the pi+ ---> pi0 e+ nu branching ratio

D. Pocanic; S. M. Korenchenko; A. S. Korenchenko; L. C. Smith; V. V. Sidorkin; H.P. Wirtz; W. Li; Y. Wang; B. G. Ritchie; V. Baranov; E. Frlez; T. Kozlowski; J.F. Crawford; N. P. Kravchuk; R. Minehart; Wilhelm Bertl; S. Ritt; B.A. VanDevender; N. A. Kuchinsky; A.M. Rozhdestvensky; M. Daum; D. Mzhavia; K. O. H. Ziock; M. Bychkov; I. Supek; Ch. Brönnimann; N. V. Khomutov; Z. Tsamalaidze

Using a large acceptance calorimeter and a stopped pion beam we have made a precise measurement of the rare pi(+)-->pi(0)e(+)nu (pi(beta)) decay branching ratio. We have evaluated the branching ratio by normalizing the number of observed pi(beta) decays to the number of observed pi(+)-->e(+)nu (pi(e2)) decays. We find the value of Gamma(pi(+)-->pi(0)e(+)nu)/Gamma(total)=[1.036+/-0.004(stat)+/-0.004(syst)+/-0.003(pi(e2))]x10(-8), where the first uncertainty is statistical, the second systematic, and the third is the pi(e2) branching ratio uncertainty. Our result agrees well with the standard model prediction.


Physics Letters B | 1995

Measurements of the Q2-dependence of the proton and deuteron spin structure functions g1p and g1d

K. Abe; L.M. Stuart; J. Marroncle; W. Meyer; F. Staleye; B. Youngman; J. P. Chen; D. Reyna; Y. Terrien; M. Kuriki; F. Suekane; T. Maruyarna; R.G. Arnold; R. M. Gearhart; S. E. Kuhn; C. Young; R. Erbacher; Javier Gomez; J.L. White; H. Fonvieille; M. Daoudi; D. Day; J. Dunne; D. Kawall; D. Pocanic; H. R. Band; J. Clendenin; M. Spengosa; T. J. Liu; D. Walz

The ratio g1/F1 has been measured over the range 0.03 1 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation.The ratio g1/F1 has been measured over the range 0.03<x<0.6 and 0.3<Q2<10 (GeV/c)2 using deep-inelastic scattering of polarized electrons from polarized protons and deuterons. We find g1/F1 to be consistent with no Q2-dependence at fixed x in the deep-inelastic region Q^2>1 (GeV/c)2. A trend is observed for g1/F1 to decrease at lower Q2. Fits to world data with and without a possible Q2-dependence in g1/F1 are in agreement with the Bjorken sum rule, but Delta_q is substantially less than the quark-parton model expectation.


Physical Review C | 2006

Proton G_E/G_M from beam-target asymmetry

M. K. Jones; A. Aghalaryan; Abdellah Ahmidouch; R. Asaturyan; F. Bloch; Werner U. Boeglin; P. Bosted; C. Carasco; R. Carlini; J. Cha; J. P. Chen; M. E. Christy; L. Cole; Luminita Coman; D. Crabb; S. Danagoulian; D. Day; James Dunne; M. Elaasar; R. Ent; H. Fenker; E. Frlez; D. Gaskell; L. Gan; J. Gomez; Bitao Hu; J. Jourdan; Christopher Douglas Keith; Cynthia Keppel; Mahbubul Khandaker

The ratio of the protons electric to magnetic form factor, G{sub E}/G{sub M}, can be extracted in elastic electron-proton scattering by measuring cross sections, beam-target asymmetry, or recoil polarization. Separate determinations of G{sub E}/G{sub M} by cross sections and recoil polarization observables disagree for Q{sup 2}>1 (GeV/c){sup 2}. Measurement by a third technique might uncover an unknown systematic error in either of the previous measurements. The beam-target asymmetry has been measured for elastic electron-proton scattering at Q{sup 2} = 1.51 (GeV/c){sup 2} for target spin orientation aligned perpendicular to the beam momentum direction. This is the largest Q{sup 2} at which G{sub E}/G{sub M} has been determined by a beam-target asymmetry experiment. The result, {mu}G{sub E}/G{sub M}=0.884{+-}0.027{+-}0.029, is compared to previous world data.


Physical Review Letters | 2007

Proton Spin Structure in the Resonance Region

F. R. Wesselmann; K. Slifer; S. Tajima; A. Aghalaryan; A. Ahmidouch; R. Asaturyan; F. Bloch; W. Boeglin; P. Bosted; C. Carasco; R. Carlini; J. Cha; J. P. Chen; M. E. Christy; L. Cole; L. Coman; D. Crabb; S. Danagoulian; D. Day; J. Dunne; M. Elaasar; R. Ent; H. Fenker; E. Frlez; L. Gan; D. Gaskell; Jonatan Piedra Gomez; B. Hu; M. K. Jones; J. Jourdan

We have examined the spin structure of the proton in the region of the nucleon resonances (1.085 GeV<W<1.910 GeV) at an average four momentum transfer of Q2=1.3 GeV2. Using the Jefferson Lab polarized electron beam, a spectrometer, and a polarized solid target, we measured the asymmetries A|| and A(perpendicular) to high precision, and extracted the asymmetries A1 and A2, and the spin structure functions g1 and g2. We found a notably nonzero A(perpendicular), significant contributions from higher-twist effects, and only weak support for polarized quark-hadron duality.

Collaboration


Dive into the E. Frlez's collaboration.

Top Co-Authors

Avatar

P. Bosted

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

D. Crabb

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

D. Day

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. R. Band

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. E. Chupp

University of Michigan

View shared research outputs
Top Co-Authors

Avatar

H. Borel

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

D. Pocanic

University of Virginia

View shared research outputs
Top Co-Authors

Avatar

G.R. Court

University of Liverpool

View shared research outputs
Researchain Logo
Decentralizing Knowledge