Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Godoy is active.

Publication


Featured researches published by E. Godoy.


Journal of Computational and Applied Mathematics | 1997

Minimal recurrence relations for connection coefficients between classical orthogonal polynomials: discrete case

I. Area; E. Godoy; André Ronveaux; A. Zarzo

Abstract We present a simple approach in order to compute recursively the connection coefficients between two families of classical (discrete) orthogonal polynomials (Charlier, Meixner, Kravchuk, Hahn), i.e., the coefficients Cm(n) in the expression P n (X)= ∑ n m=0 C m (n)Q m (x) , where Pn(x) and Qm(x) belong to the aforementioned class of polynomials. This is SCV2 done by adapting a general and systematic algorithm, recently developed by the authors, to the discrete classical situation. Moreover, extensions of this method allow to give new addition formulae and to estimate Cm(n)-asymptotics in limit relations between some families.


Journal of Computational and Applied Mathematics | 1995

Recurrence relations for connection coefficients between two families of orthogonal polynomials

André Ronveaux; A. Zarzo; E. Godoy

We describe a simple approach in order to build recursively the connection coefficients between two families of orthogonal polynomial solutions of second- and fourth-order differential equations.


Journal of Computational and Applied Mathematics | 2001

Solving connection and linearization problems within the Askey scheme and its q -analogue via inversion formulas

I. Area; E. Godoy; André Ronveaux; A. Zarzo

For the polynomial families {Pn(x)}n belonging to the Askey scheme or to its q-analogue, the hypergeometric represen- tation provides a natural expansion of the form Pn(x )= � n=0 Dm(n)� m(x), where the expanding basism(x) is, in general, a product of Pochhammer symbols or q-shifted factorials. In this paper we solve the corresponding inversion problem, i.e. we compute the coe6cients Im(n) in the expansionn(x )= � n m=0 Im(n)Pm(x), which are then used as a tool for solving any connection and linearization problem within the Askey scheme and its q-analogue. Extensions of this approach for polynomials outside these two schemes are also given. c


Journal of Symbolic Computation | 1999

Inversion Problems in theq-Hahn Tableau

I. Area; E. Godoy; André Ronveaux; A. Zarzo

If { Pn(x;q)}nis a family of polynomials belonging to the q -Hahn tableau then each polynomial of this family can be written as Pn(x;q) =?m=0nDm(n)?m(x) where ?m(x) stands for (x;q)mor xm. In this paper we solve the corresponding inversion problem, i.e. we find the explicit expression for the coefficients Im(n) in the expansion ?n(x) =?m=0nIm(n)Pm(x;q).


Mathematics of Computation | 2004

Zeros of Gegenbauer and Hermite polynomials and connection coefficients

I. Area; Dimitar K. Dimitrov; E. Godoy; André Ronveaux

In this paper, sharp upper limit for the zeros of the ultraspherical polynomials are obtained via a result of Obrechkoff and certain explicit connection coefficients for these polynomials. As a consequence, sharp bounds for the zeros of the Hermite polynomials are obtained.


Journal of Physics A | 1997

Results for some inversion problems for classical continuous and discrete orthogonal polynomials

A. Zarzo; I. Area; E. Godoy; André Ronveaux

Explicit expressions for the coefficients in the expansion of classical discrete orthogonal polynomials (Charlier, Meixner, Krawtchouck, Hahn, Hahn - Eberlein) into the falling factorial basis are given. The corresponding inversion problems are solved explicitly. This is done by using a general algorithm, recently developed by the authors, which is also applied to this kind of inversion problem but relating the basis and the classical (continuous) orthogonal polynomials of Jacobi, Laguerre, Hermite and Bessel.


Journal of Computational and Applied Mathematics | 1993

Fourth-order differential equation satisfied by the associated of any order of all classical orthogonal polynomials: a study of their distribution of zeros

A. Zarzo; André Ronveaux; E. Godoy

Abstract The first associated (numerator polynomials) of all classical orthogonal polynomials satisfy one fourth-order differential equation valid for the four classical families, but for the associated of arbitrary order the differential equations are only known separately. In this work we introduce a program built in Mathematica symbolic language which is able to construct the unique differential equation satisfied by the associated of any order of the classical class. Then we use this differential equation in order to study the distribution of zeros of these polynomials via their Newton sum rules (i.e., the sums of the kth power of zeros) which are closely related with the moments of such a distribution.


Journal of Computational and Applied Mathematics | 1998

On the limit relations between classical continuous and discrete orthogonal polynomials

E. Godoy; André Ronveaux; A. Zarzo; I. Area

Abstract Limit relations between classical continuous (Jacobi, Laguerre, Hermite) and discrete (Charlier, Meixner, Kravchuk, Hahn) orthogonal polynomials are well known and can be described by relations of type limλ → ∞ Pn(x;λ) = Qn(x). Deeper information on these limiting processes can be obtained from the expansion P n (x;λ) = ∑ k=0 ∞ R k (x;n) λ k . In this paper a method for the recursive computation of coefficients Rk(x;n) is designed being the main tool the consideration of a closely related connection problem which can be solved, also recurrently, by using an algorithm recently developed by the authors.


Journal of Computational and Applied Mathematics | 2000

Classical orthogonal polynomials: dependence on parameters

André Ronveaux; A. Zarzo; I. Area; E. Godoy

Most of the classical orthogonal polynomials (continuous, discrete and their q-analogues) can be considered as functions of several parameters ci. A systematic study of the variation, innitesimal and nite, of these polynomials Pn(x;ci) with respect to the parameters ci is proposed. A method to get recurrence relations for connection coecients linking (@ r =@c r i)Pn(x;ci )t oPn(x;ci) is given and, in some situations, explicit expressions are obtained. This allows us to compute new integrals or sums of classical orthogonal polynomials using the digamma function. A basic theorem on the zeros of (@=@ci)Pn(x;ci) is also proved. c 2000 Elsevier Science B.V. All rights reserved. MSC: 33C25; 42C05; 33B15


Integral Transforms and Special Functions | 2000

Classification of all δ-Coherent Pairs

I. Area; E. Godoy; Francisco Marcellán

In a recent work we have proved that if (u 0 u 1) is a δ-coherent pair of linear functionals, then at least one of them must be a classical discrete linear functional under certain conditions. In this paper we present a similar result for Dw -coherent pairs and the description of all δ-coherent pairs. Furthermore, by using a limit process we recover the classification of all coherent pairs of positive definite linear functionals.

Collaboration


Dive into the E. Godoy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

André Ronveaux

Université catholique de Louvain

View shared research outputs
Top Co-Authors

Avatar

A. Zarzo

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vanessa G. Paschoa

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natig M. Atakishiyev

National Autonomous University of Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge