E. Hennessy
National University of Ireland, Galway
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Hennessy.
Clinical Cancer Research | 2007
Roisin M. Dwyer; S.M. Potter-Beirne; K.A. Harrington; Aoife J. Lowery; E. Hennessy; James M. Murphy; Frank Barry; Timothy O'Brien; Michael J. Kerin
Purpose: Major barriers to effective adenovirus-based gene therapy include induction of an immune response and tumor-specific targeting of vectors. The use of mesenchymal stem cells (MSC) as systemic delivery vehicles for therapeutic genes has been proposed as a result of their combined ability to home in on the tumor site and evade the host immune response. This study is aimed at investigating factors mediating homing of human MSCs to breast cancer primary cultures and cell lines in vitro and in vivo. Experimental Design: Fluorescently labeled MSCs were given to mice bearing breast cancer xenografts, and tumor tissue was harvested to detect MSC engraftment. MSC migration in response to primary breast tumors in vitro was quantified, and chemokines secreted by tumor cells were identified. The role of monocyte chemotactic protein-1 (MCP-1) in cell migration was investigated using antibodies and standards of the chemokine. Serum MCP-1 was measured in 125 breast cancer patients and 86 healthy controls. Results: Engrafted MSCs were detected in metastatic breast tumors in mice after systemic administration. There was a significant increase in MSC migration in response to primary breast tumor cells in vitro (6-fold to 11-fold increase). Tumor explants secreted a variety of chemokines including GROα, MCP-1, and stromal cell–derived factor-1α. An MCP-1 antibody caused a significant decrease (37-42%) in MSC migration to tumors. Serum MCP-1 levels were significantly higher in postmenopausal breast cancer patients than age-matched controls (P < 0.05). Conclusions: These results highlight a role for tumor-secreted MCP-1 in stimulating MSC migration and support the potential of these cells as tumor-targeted delivery vehicles for therapeutic agents.
Breast Cancer Research and Treatment | 2010
Fiachra T. Martin; Roisin M. Dwyer; John C. Kelly; Sonja Khan; J. M. Murphy; C. Curran; Nicola Miller; E. Hennessy; Peter Dockery; Frank Barry; Timothy O’Brien; Michael J. Kerin
Bone marrow-derived mesenchymal stem cells (MSCs) are known to specifically migrate to and engraft at tumour sites. Understanding interactions between cancer cells and MSCs has become fundamental to determining whether MSC-tumour interactions should be harnessed for delivery of therapeutic agents or considered a target for intervention. Breast Cancer Cell lines (MDA-MB-231, T47D & SK-Br3) were cultured alone or on a monolayer of MSCs, and retrieved using epithelial specific magnetic beads. Alterations in expression of 90 genes associated with breast tumourigenicity were analysed using low-density array. Expression of markers of epithelial–mesenchymal transition (EMT) and array results were validated using RQ-PCR. Co-cultured cells were analysed for changes in protein expression, growth pattern and morphology. Gene expression and proliferation assays were also performed on indirect co-cultures. Following direct co-culture with MSCs, breast cancer cells expressed elevated levels of oncogenes (NCOA4, FOS), proto-oncogenes (FYN, JUN), genes associated with invasion (MMP11), angiogenesis (VEGF) and anti-apoptosis (IGF1R, BCL2). However, universal downregulation of genes associated with proliferation was observed (Ki67, MYBL2), and reflected in reduced ATP production in response to MSC-secreted factors. Significant upregulation of EMT specific markers (N-cadherin, Vimentin, Twist and Snail) was also observed following co-culture with MSCs, with a reciprocal downregulation in E-cadherin protein expression. These changes were predominantly cell contact mediated and appeared to be MSC specific. Breast cancer cell morphology and growth pattern also altered in response to MSCs. MSCs may promote breast cancer metastasis through facilitation of EMT.
PLOS ONE | 2011
James Ryan; C. Curran; E. Hennessy; John Newell; John C. Morris; Michael J. Kerin; Roisin M. Dwyer
Introduction The presence, relevance and regulation of the Sodium Iodide Symporter (NIS) in human mammary tissue remains poorly understood. This study aimed to quantify relative expression of NIS and putative regulators in human breast tissue, with relationships observed further investigated in vitro. Methods Human breast tissue specimens (malignant n = 75, normal n = 15, fibroadenoma n = 10) were analysed by RQ-PCR targeting NIS, receptors for retinoic acid (RARα, RARβ), oestrogen (ERα), thyroid hormones (THRα, THRβ), and also phosphoinositide-3-kinase (PI3K). Breast cancer cells were treated with Retinoic acid (ATRA), Estradiol and Thyroxine individually and in combination followed by analysis of changes in NIS expression. Results The lowest levels of NIS were detected in normal tissue (Mean(SEM) 0.70(0.12) Log10 Relative Quantity (RQ)) with significantly higher levels observed in fibroadenoma (1.69(0.21) Log10RQ, p<0.005) and malignant breast tissue (1.18(0.07) Log10RQ, p<0.05). Significant positive correlations were observed between human NIS and ERα (r = 0.22, p<0.05) and RARα (r = 0.29, p<0.005), with the strongest relationship observed between NIS and RARβ (r = 0.38, p<0.0001). An inverse relationship between NIS and PI3K expression was also observed (r = −0.21, p<0.05). In vitro, ATRA, Estradiol and Thyroxine individually stimulated significant increases in NIS expression (range 6–16 fold), while ATRA and Thyroxine combined caused the greatest increase (range 16–26 fold). Conclusion Although NIS expression is significantly higher in malignant compared to normal breast tissue, the highest level was detected in fibroadenoma. The data presented supports a role for retinoic acid and estradiol in mammary NIS regulation in vivo, and also highlights potential thyroidal regulation of mammary NIS mediated by thyroid hormones.
European Journal of Cancer | 2011
M.C. Hartmann; Roisin M. Dwyer; M. Costello; Shirley M. Potter; C. Curran; E. Hennessy; John Newell; Damian Griffin; Michael J. Kerin
PURPOSE Investigate circulating CCL5 in breast cancer patients and healthy controls, along with gene expression levels in corresponding tumour tissue and isolated primary stromal cells. Hormonal control of CCL5, and a potential relationship with TGFβ1, was also investigated. METHODS Circulating levels of CCL5 and TGFβ1 were measured in 102 breast cancer patients and 66 controls using ELISA. Gene expression levels (CCL5, CCR5, TGFβ1, TGFβRII) were quantified in corresponding tumour tissue (n = 43), normal tissue (n = 16), and isolated tumour (n = 22) and normal (n = 3) stromal cells using RQ-PCR. CCL5 and circulating menstrual hormones (LH, FSH, Oestradiol, Progesterone) were analysed in serum samples from healthy, premenopausal volunteers (n = 60). RESULTS TGFβ1 was significantly higher in breast cancer patients (Mean(SEM) 27.4(0.9)ng/ml) compared to controls (14.9(0.9)ng/ml). CCL5 levels decreased in the transition from node negative (59.6(3.7)ng/ml) to node positive disease (40.5(6.3)ng/ml) and increased again as the number of positive lymph nodes increased (⩾3 positive 50.95(9.8)ng/ml). A significant positive correlation between circulating CCL5 and TGFβ1 (r = 0.423, p<0.0001) was observed, and mirrored at the gene expression level in tumour tissue from the same patients (r = 0.44, p<0.001). CCL5, CCR5 and TGFβ1 expression was significantly higher in tumour compared to normal breast tissue (p < 0.001). A significant negative correlation was observed between circulating CCL5, Oestradiol and Progesterone (r = -0.50, r = -0.39, respectively, p < 0.05). CONCLUSION CCL5 expression is elevated in the tumour microenvironment. The data support a role for hormonal control of circulating CCL5 and also highlight a potentially important relationship between CCL5 and TGFβ1 in breast cancer.
British Journal of Surgery | 2008
J. Ní Mhuircheartaigh; C. Curran; E. Hennessy; Michael J. Kerin
Whether the prognosis of invasive lobular carcinoma is different from that of other invasive breast cancers is controversial. The aim of this study was to compare the outcome in age‐ and stage‐matched patients with lobular carcinoma and those with invasive breast cancer, and in particular to compare predictors of outcome.
BMC Cancer | 2008
Aoife J. Lowery; Karl J. Sweeney; Alan Molloy; E. Hennessy; C. Curran; Michael J. Kerin
BackgroundVascular endothelial growth factor (VEGF) is a potent angiogenic cytokine produced physiologically by the uterus. Pathological secretion by tumours promotes growth and metastasis. High circulating VEGF levels potentially have a deleterious effect on breast cancer by promoting disease progression.The aims of this study were to investigate circulating VEGF levels in breast cancer patients and assess the effect of menopause or hysterectomy on systemic VEGF.MethodsPatients undergoing primary surgery for breast cancer and controls matched for age, menopausal and hysterectomy status were prospectively recruited. Serum VEGF, FSH, LH, estrogen, progesterone and platelet levels were measured. Serum VEGF was corrected for platelet load (sVEGFp) to provide a biologically relevant measurement of circulating VEGF. SVEGFp levels were analyzed with respect to tumor characteristics, menopausal status and hysterectomy status.ResultsTwo hundred women were included in the study; 89 breast cancer patients and 111 controls. SVEGFp levels were significantly higher in breast cancer patients compared to controls (p = 0.0001), but were not associated with clinico-pathological tumor characteristics. Systemic VEGF levels reduced significantly in the breast cancer patients following tumor excision (p = 0.018). The highest systemic VEGF levels were observed in postmenopausal breast cancer patients. Postmenopausal women who had had a previous hysterectomy had significantly higher VEGF levels than those with an intact postmenopausal uterus (p = 0.001).ConclusionThis study identifies an intact postmenopausal uterus as a potential means of reducing circulating levels of VEGF which could confer a protective effect against breast cancer metastatic potential.
Ejso | 2011
Kah Hoong Chang; Nicola Miller; Elrasheid A. H. Kheirelseid; H. Ingoldsby; E. Hennessy; C. Curran; S. Curran; M.J. Smith; M. Regan; Oliver J. McAnena; Michael J. Kerin
Breast Cancer Research and Treatment | 2009
Shirley M. Potter; Roisin M. Dwyer; C. Curran; E. Hennessy; Kate A. Harrington; Damian Griffin; Michael J. Kerin
Ejc Supplements | 2009
J. Ryan; E. Hennessy; C. Curran; John C. Morris; Michael J. Kerin; Roisin M. Dwyer
Ejc Supplements | 2008
Shirley M. Potter; Roisin M. Dwyer; E. Hennessy; Damian Griffin; Michael J. Kerin