Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E.J. Moors is active.

Publication


Featured researches published by E.J. Moors.


Nature | 2000

Respiration as the main determinant of carbon balance in European forests

Riccardo Valentini; Giorgio Matteucci; A. J. Dolman; Ernst-Detlef Schulze; Corinna Rebmann; E.J. Moors; A. Granier; P. Gross; Niels Otto Jensen; Kim Pilegaard; Anders Lindroth; Achim Grelle; Christian Bernhofer; Thomas Grünwald; Marc Aubinet; R. Ceulemans; Andrew S. Kowalski; Timo Vesala; Üllar Rannik; Paul Berbigier; Denis Loustau; J. Guðmundsson; Halldor Thorgeirsson; Andreas Ibrom; K. Morgenstern; Robert Clement; John Moncrieff; Leonardo Montagnani; S. Minerbi; P. G. Jarvis

Carbon exchange between the terrestrial biosphere and the atmosphere is one of the key processes that need to be assessed in the context of the Kyoto Protocol. Several studies suggest that the terrestrial biosphere is gaining carbon, but these estimates are obtained primarily by indirect methods, and the factors that control terrestrial carbon exchange, its magnitude and primary locations, are under debate. Here we present data of net ecosystem carbon exchange, collected between 1996 and 1998 from 15 European forests, which confirm that many European forest ecosystems act as carbon sinks. The annual carbon balances range from an uptake of 6.6 tonnes of carbon per hectare per year to a release of nearly 1 t C ha -1 yr-1, with a large variability between forests. The data show a significant increase of carbon uptake with decreasing latitude, whereas the gross primary production seems to be largely independent of latitude. Our observations indicate that, in general, ecosystem respiration determines net ecosystem carbon exchange. Also, for an accurate assessment of the carbon balance in a particular forest ecosystem, remote sensing of the normalized difference vegetation index or estimates based on forest inventories may not be sufficient.


Journal of Geophysical Research | 2011

Global patterns of land‐atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations

Martin Jung; Markus Reichstein; Hank A. Margolis; Alessandro Cescatti; Andrew D. Richardson; M. Altaf Arain; Almut Arneth; Christian Bernhofer; Damien Bonal; Jiquan Chen; Damiano Gianelle; Nadine Gobron; Gerald Kiely; Werner L. Kutsch; Gitta Lasslop; Beverly E. Law; Anders Lindroth; Lutz Merbold; Leonardo Montagnani; E.J. Moors; Dario Papale; Matteo Sottocornola; Francesco Primo Vaccari; Christopher A. Williams

We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5 degrees x 0.5 degrees spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 +/- 7 J x 10(18) yr(-1)), H (164 +/- 15 J x 10(18) yr(-1)), and GPP (119 +/- 6 Pg C yr(-1)) were similar to independent estimates. Our global TER estimate (96 +/- 6 Pg C yr(-1)) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.


Philosophical Transactions of the Royal Society B | 2010

Influence of spring and autumn phenological transitions on forest ecosystem productivity

Andrew D. Richardson; T. Andy Black; Philippe Ciais; Nicolas Delbart; Mark A. Friedl; Nadine Gobron; David Y. Hollinger; Werner L. Kutsch; Bernard Longdoz; Sebastiaan Luyssaert; Mirco Migliavacca; Leonardo Montagnani; J. William Munger; E.J. Moors; Shilong Piao; Corinna Rebmann; Markus Reichstein; Nobuko Saigusa; Enrico Tomelleri; Rodrigo Vargas; Andrej Varlagin

We use eddy covariance measurements of net ecosystem productivity (NEP) from 21 FLUXNET sites (153 site-years of data) to investigate relationships between phenology and productivity (in terms of both NEP and gross ecosystem photosynthesis, GEP) in temperate and boreal forests. Results are used to evaluate the plausibility of four different conceptual models. Phenological indicators were derived from the eddy covariance time series, and from remote sensing and models. We examine spatial patterns (across sites) and temporal patterns (across years); an important conclusion is that it is likely that neither of these accurately represents how productivity will respond to future phenological shifts resulting from ongoing climate change. In spring and autumn, increased GEP resulting from an ‘extra’ day tends to be offset by concurrent, but smaller, increases in ecosystem respiration, and thus the effect on NEP is still positive. Spring productivity anomalies appear to have carry-over effects that translate to productivity anomalies in the following autumn, but it is not clear that these result directly from phenological anomalies. Finally, the productivity of evergreen needleleaf forests is less sensitive to phenology than is productivity of deciduous broadleaf forests. This has implications for how climate change may drive shifts in competition within mixed-species stands.


Global Biogeochemical Cycles | 2009

Temporal and among-site variability of inherent water use efficiency at the ecosystem level

Christian Beer; Philippe Ciais; Markus Reichstein; Dennis D. Baldocchi; Beverly E. Law; D. Papale; J. F. Soussana; C. Ammann; Nina Buchmann; Dorothea Frank; Damiano Gianelle; Ivan A. Janssens; Alexander Knohl; Barbara Köstner; E.J. Moors; Olivier Roupsard; Hans Verbeeck; Timo Vesala; Christopher A. Williams; G. Wohlfahrt

Half-hourly measurements of the net exchanges of carbon dioxide and water vapor between terrestrial ecosystems and the atmosphere provide estimates of gross primary production (GPP) and evapotranspiration (ET) at the ecosystem level and on daily to annual timescales. The ratio of these quantities represents ecosystem water use efficiency. Its multiplication with mean daylight vapor pressure deficit (VPD) leads to a quantity which we call “inherent water use efficiency” (IWUE*). The dependence of IWUE* on environmental conditions indicates possible adaptive adjustment of ecosystem physiology in response to a changing environment. IWUE* is analyzed for 43 sites across a range of plant functional types and climatic conditions. IWUE* increases during short-term moderate drought conditions. Mean annual IWUE* varied by a factor of 3 among all sites. This is partly explained by soil moisture at field capacity, particularly in deciduous broad-leaved forests. Canopy light interception sets the upper limits to canopy photosynthesis, and explains half the variance in annual IWUE* among herbaceous ecosystems and evergreen needle-leaved forests. Knowledge of IWUE* offers valuable improvement to the representation of carbon and water coupling in ecosystem process models


Agricultural and Forest Meteorology | 2002

Phase and amplitude of ecosystem carbon release and uptake potentials as derived from FLUXNET measurements

Eva Falge; John Tenhunen; Dennis D. Baldocchi; Marc Aubinet; Peter S. Bakwin; Paul Berbigier; Christian Bernhofer; Jean-Marc Bonnefond; George Burba; Robert Clement; Kenneth J. Davis; J.A. Elbers; Matthias Falk; Allen H. Goldstein; Achim Grelle; André Granier; Thomas Grünwald; J. Guðmundsson; David Y. Hollinger; Ivan A. Janssens; P. Keronen; Andrew S. Kowalski; Gabriel G. Katul; Beverly E. Law; Yadvinder Malhi; Tilden P. Meyers; Russell K. Monson; E.J. Moors; J. William Munger; Walter Oechel

As length and timing of the growing season are major factors explaining differences in carbon exchange of ecosystems, we analyzed seasonal patterns of net ecosystem carbon exchange (FNEE) using eddy covariance data of the FLUXNET data base (http://www-eosdis.ornl.gov/FLUXNET). The study included boreal and temperate, deciduous and coniferous forests, Mediterranean evergreen systems, rainforest, native and managed temperate grasslands, tundra, and C3 and C4 crops. Generalization of seasonal patterns are useful for identifying functional vegetation types for global dynamic vegetation models, as well as for global inversion studies, and can help improve phenological modules in SVAT or biogeochemical models. The results of this study have important validation potential for global carbon cycle modeling. The phasing of respiratory and assimilatory capacity differed within forest types: for temperate coniferous forests seasonal uptake and release capacities are in phase, for temperate deciduous and boreal coniferous forests, release was delayed compared to uptake. According to seasonal pattern of maximum nighttime release (evaluated over 15-day periods, Fmax) the study sites can be grouped in four classes: (1) boreal and high altitude conifers and grasslands; (2) temperate deciduous and temperate conifers; (3) tundra and crops; (4) evergreen Mediterranean and tropical forests. Similar results are found for maximum daytime uptake (Fmin) and the integral net carbon flux, but temperate deciduous forests fall into class 1. For forests, seasonal amplitudes of Fmax and Fmin increased in the order tropical C3-crops>temperate deciduous forests>temperate conifers>boreal conifers>tundra ecosystems. Due to data restrictions, our analysis centered mainly on Northern Hemisphere temperate and boreal forest ecosystems. Grasslands, crops, Mediterranean ecosystems, and rainforests are under-represented, as are savanna systems, wooded grassland, shrubland, or year-round measurements in tundra systems. For regional or global estimates of carbon sequestration potentials, future investigations of eddy covariance should expand in these systems.


Agricultural and Forest Meteorology | 2002

The carbon uptake of a mid latitude pine forest growing on sandy soil

A. J. Dolman; E.J. Moors; J.A. Elbers

Measurements of net ecosystem exchange (NEE) are described over a temperate coniferous forest in The Netherlands. The data show no loss of night-time fluxes at low values of friction velocity. Measurements of concentration profiles show a wide diurnal range in concentration values (50 ppm) during July in the summer compared to November in the late autumn (10 ppm). This is a result of photosynthetic activity during summer. The profiles also show the effect of respiration in the build up of the night-time profiles. The half-hourly day time NEE shows a relation with incoming short-wave radiation when separate classes of specific humidity deficit are defined. Quantum yield varies from 0.0197 to 0.0375. A linear relation was found between NEE and surface conductance at the ecosystem level. The annual carbon sequestration of the forest in 1997 is 338 g m −2 per year. It was estimated that respiration contributed 122 1gCm −2 per year to the NEE. This brings the gross primary production (GPP) of this forest to 155 9gCm −2 per year. The forest shows a clear growing season (positive uptake) of 249 days, but even during the winter the forest acts as a sink for a few hours around noon.


Nature Climate Change | 2014

Land management and land-cover change have impacts of similar magnitude on surface temperature

Sebastiaan Luyssaert; Mathilde Jammet; Paul C. Stoy; Stephen Estel; Julia Pongratz; Eric Ceschia; Galina Churkina; Axel Don; Karl-Heinz Erb; Morgan Ferlicoq; Bert Gielen; Thomas Grünwald; R. A. Houghton; Katja Klumpp; Alexander Knohl; Thomas E. Kolb; Tobias Kuemmerle; Tuomas Laurila; Annalea Lohila; Denis Loustau; Matthew J. McGrath; Patrick Meyfroidt; E.J. Moors; Kim Naudts; Kim Novick; Juliane Otto; Kim Pilegaard; Casimiro Pio; Serge Rambal; Corinna Rebmann

The direct effects of land-cover change on surface climate are increasingly well understood, but fewer studies have investigated the consequences of the trend towards more intensive land management practices. Now, research investigating the biophysical effects of temperate land-management changes reveals a net warming effect of similar magnitude to that driven by changing land cover.


Rangeland Ecology & Management | 2010

Productivity, Respiration, and Light-Response Parameters of World Grassland and Agroecosystems Derived From Flux-Tower Measurements

Tagir G. Gilmanov; Luis Miguel Igreja Aires; Zoltán Barcza; V. S. Baron; L. Belelli; Jason Beringer; David P. Billesbach; Damien Bonal; James A. Bradford; Eric Ceschia; David R. Cook; Chiara A. R. Corradi; Albert B. Frank; Damiano Gianelle; Cristina Gimeno; T. Gruenwald; Haiqiang Guo; Niall P. Hanan; László Haszpra; J. Heilman; A. Jacobs; Michael Jones; Douglas A. Johnson; Gerard Kiely; Shenggong Li; Vincenzo Magliulo; E.J. Moors; Zoltán Nagy; M. Nasyrov; Clenton E. Owensby

Abstract Grasslands and agroecosystems occupy one-third of the terrestrial area, but their contribution to the global carbon cycle remains uncertain. We used a set of 316 site-years of CO2 exchange measurements to quantify gross primary productivity, respiration, and light-response parameters of grasslands, shrublands/savanna, wetlands, and cropland ecosystems worldwide. We analyzed data from 72 global flux-tower sites partitioned into gross photosynthesis and ecosystem respiration with the use of the light-response method (Gilmanov, T. G., D. A. Johnson, and N. Z. Saliendra. 2003. Growing season CO2 fluxes in a sagebrush-steppe ecosystem in Idaho: Bowen ratio/energy balance measurements and modeling. Basic and Applied Ecology 4:167–183) from the RANGEFLUX and WORLDGRASSAGRIFLUX data sets supplemented by 46 sites from the FLUXNET La Thuile data set partitioned with the use of the temperature-response method (Reichstein, M., E. Falge, D. Baldocchi, D. Papale, R. Valentini, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, M. Falk, T. Gilmanov, A. Granier, T. Grünwald, K. Havránková, D. Janous, A. Knohl, T. Laurela, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J. M. Ourcival, D. Perrin, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, and D. Yakir. 2005. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11:1424–1439). Maximum values of the quantum yield (α  =  75 mmol · mol−1), photosynthetic capacity (Amax  =  3.4 mg CO2 · m−2 · s−1), gross photosynthesis (Pg,max  =  116 g CO2 · m−2 · d−1), and ecological light-use efficiency (εecol  =  59 mmol · mol−1) of managed grasslands and high-production croplands exceeded those of most forest ecosystems, indicating the potential of nonforest ecosystems for uptake of atmospheric CO2. Maximum values of gross primary production (8 600 g CO2 · m−2 · yr−1), total ecosystem respiration (7 900 g CO2 · m−2 · yr−1), and net CO2 exchange (2 400 g CO2 · m−2 · yr−1) were observed for intensively managed grasslands and high-yield crops, and are comparable to or higher than those for forest ecosystems, excluding some tropical forests. On average, 80% of the nonforest sites were apparent sinks for atmospheric CO2, with mean net uptake of 700 g CO2 · m−2 · yr−1 for intensive grasslands and 933 g CO2 · m−2 · d−1 for croplands. However, part of these apparent sinks is accumulated in crops and forage, which are carbon pools that are harvested, transported, and decomposed off site. Therefore, although agricultural fields may be predominantly sinks for atmospheric CO2, this does not imply that they are necessarily increasing their carbon stock.


Journal of Geophysical Research | 2008

Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer

Pau Casso-torralba; Jordi Vilà-Guerau de Arellano; Fred C. Bosveld; M. R. Soler; Alex Vermeulen; Cindy Werner; E.J. Moors

The diurnal and vertical variability of heat and carbon dioxide (CO2) in the atmospheric surface layer are studied by analyzing measurements from a 213 m tower in Cabauw (Netherlands). Observations of thermodynamic variables and CO2 mixing ratio as well as vertical profiles of the turbulent fluxes are used to retrieve the contribution of the budget terms in the scalar conservation equation. On the basis of the daytime evolution of turbulent fluxes, we calculate the budget terms by assuming that turbulent fluxes follow a linear profile with height. This assumption is carefully tested and the deviation from linearity is quantified. The budget calculation allows us to assess the importance of advection of heat and CO2 during day hours for three selected days. It is found that, under nonadvective conditions, the diurnal variability of temperature and CO2 is well reproduced from the flux divergence measurements. Consequently, the vertical transport due to the turbulent flux plays a major role in the daytime evolution of both scalars and the advection is a relatively small contribution. During the analyzed days with a strong contribution of advection of either heat or carbon dioxide, the flux divergence is still an important contribution to the budget. For heat, the quantification of the advection contribution is in close agreement with results from a numerical model. For carbon dioxide, we qualitatively corroborate the results with a Lagrangian transport model. Our estimation of advection is compared with traditional estimations based on the Net Ecosystem-atmosphere Exchange (NEE).


Proceedings of the National Academy of Sciences of the United States of America | 2015

Joint control of terrestrial gross primary productivity by plant phenology and physiology

Jianyang Xia; Shuli Niu; Philippe Ciais; Ivan A. Janssens; Jiquan Chen; C. Ammann; Altaf Arain; Peter D. Blanken; Alessandro Cescatti; Damien Bonal; Nina Buchmann; Peter James Curtis; Shiping Chen; Jinwei Dong; Lawrence B. Flanagan; Christian Frankenberg; Teodoro Georgiadis; Christopher M. Gough; Dafeng Hui; Gerard Kiely; Jianwei Li; Magnus Lund; Vincenzo Magliulo; Barbara Marcolla; Lutz Merbold; Leonardo Montagnani; E.J. Moors; Jørgen E. Olesen; Shilong Piao; Antonio Raschi

Significance Terrestrial gross primary productivity (GPP), the total photosynthetic CO2 fixation at ecosystem level, fuels all life on land. However, its spatiotemporal variability is poorly understood, because GPP is determined by many processes related to plant phenology and physiological activities. In this study, we find that plant phenological and physiological properties can be integrated in a robust index—the product of the length of CO2 uptake period and the seasonal maximal photosynthesis—to explain the GPP variability over space and time in response to climate extremes and during recovery after disturbance. Terrestrial gross primary productivity (GPP) varies greatly over time and space. A better understanding of this variability is necessary for more accurate predictions of the future climate–carbon cycle feedback. Recent studies have suggested that variability in GPP is driven by a broad range of biotic and abiotic factors operating mainly through changes in vegetation phenology and physiological processes. However, it is still unclear how plant phenology and physiology can be integrated to explain the spatiotemporal variability of terrestrial GPP. Based on analyses of eddy–covariance and satellite-derived data, we decomposed annual terrestrial GPP into the length of the CO2 uptake period (CUP) and the seasonal maximal capacity of CO2 uptake (GPPmax). The product of CUP and GPPmax explained >90% of the temporal GPP variability in most areas of North America during 2000–2010 and the spatial GPP variation among globally distributed eddy flux tower sites. It also explained GPP response to the European heatwave in 2003 (r2 = 0.90) and GPP recovery after a fire disturbance in South Dakota (r2 = 0.88). Additional analysis of the eddy–covariance flux data shows that the interbiome variation in annual GPP is better explained by that in GPPmax than CUP. These findings indicate that terrestrial GPP is jointly controlled by ecosystem-level plant phenology and photosynthetic capacity, and greater understanding of GPPmax and CUP responses to environmental and biological variations will, thus, improve predictions of GPP over time and space.

Collaboration


Dive into the E.J. Moors's collaboration.

Top Co-Authors

Avatar

Leonardo Montagnani

Free University of Bozen-Bolzano

View shared research outputs
Top Co-Authors

Avatar

Thomas Grünwald

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Christian Bernhofer

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

A. J. Dolman

VU University Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kim Pilegaard

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge