Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. J. Synakowski is active.

Publication


Featured researches published by E. J. Synakowski.


Nuclear Fusion | 2000

Exploration of Spherical Torus Physics in the NSTX Device

M. Ono; S.M. Kaye; Yueng Kay Martin Peng; G. Barnes; W. Blanchard; Mark Dwain Carter; J. Chrzanowski; L. Dudek; R. Ewig; D.A. Gates; Ron Hatcher; Thomas R. Jarboe; S.C. Jardin; D. Johnson; R. Kaita; M. Kalish; C. Kessel; H.W. Kugel; R. Maingi; R. Majeski; J. Manickam; B. McCormack; J. Menard; D. Mueller; B.A. Nelson; B. E. Nelson; C. Neumeyer; G. Oliaro; F. Paoletti; R. Parsells

The National Spherical Torus Experiment (NSTX) is being built at the Princeton Plasma Physics Laboratory to test the fusion physics principles for the Spherical Torus (ST) concept at the MA level. The NSTX nominal plasma parameters are R {sub 0} = 85 cm, a = 67 cm, R/a greater than or equal to 1.26, B {sub T} = 3 kG, I {sub p} = 1 MA, q {sub 95} = 14, elongation {kappa} less than or equal to 2.2, triangularity {delta} less than or equal to 0.5, and plasma pulse length of up to 5 sec. The plasma heating/current drive (CD) tools are High Harmonic Fast Wave (HHFW) (6 MW, 5 sec), Neutral Beam Injection (NBI) (5 MW, 80 keV, 5 sec), and Coaxial Helicity Injection (CHI). Theoretical calculations predict that NSTX should provide exciting possibilities for exploring a number of important new physics regimes including very high plasma beta, naturally high plasma elongation, high bootstrap current fraction, absolute magnetic well, and high pressure driven sheared flow. In addition, the NSTX program plans to explore fully noninductive plasma start-up, as well as a dispersive scrape-off layer for heat and particle flux handling.


Nuclear Fusion | 2007

Chapter 2: Plasma confinement and transport

E. J. Doyle; W.A. Houlberg; Y. Kamada; V.S. Mukhovatov; T.H. Osborne; A. Polevoi; G. Bateman; J.W. Connor; J. G. Cordey; T. Fujita; X. Garbet; T. S. Hahm; L. D. Horton; A. E. Hubbard; F. Imbeaux; F. Jenko; J. E. Kinsey; Yasuaki Kishimoto; J. Li; T. C. Luce; Y. Martin; M. Ossipenko; V. Parail; A. G. Peeters; T. L. Rhodes; J. E. Rice; C. M. Roach; V.A. Rozhansky; F. Ryter; G. Saibene

The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions. Very considerable progress has been made in understanding, controlling and predicting tokamak transport across a wide variety of plasma conditions and regimes since the publication of the ITER Physics Basis (IPB) document (1999 Nucl. Fusion 39 2137-2664). Major areas of progress considered here follow. (1) Substantial improvement in the physics content, capability and reliability of transport simulation and modelling codes, leading to much increased theory/experiment interaction as these codes are increasingly used to interpret and predict experiment. (2) Remarkable progress has been made in developing and understanding regimes of improved core confinement. Internal transport barriers and other forms of reduced core transport are now routinely obtained in all the leading tokamak devices worldwide. (3) The importance of controlling the H-mode edge pedestal is now generally recognized. Substantial progress has been made in extending high confinement H-mode operation to the Greenwald density, the demonstration of Type I ELM mitigation and control techniques and systematic explanation of Type I ELM stability. Theory-based predictive capability has also shown progress by integrating the plasma and neutral transport with MHD stability. (4) Transport projections to ITER are now made using three complementary approaches: empirical or global scaling, theory-based transport modelling and dimensionless parameter scaling (previously, empirical scaling was the dominant approach). For the ITER base case or the reference scenario of conventional ELMy H-mode operation, all three techniques predict that ITER will have sufficient confinement to meet its design target of Q = 10 operation, within similar uncertainties.


Physics of Plasmas | 1996

Enhancement of Tokamak Fusion Test Reactor performance by lithium conditioning

D.K. Mansfield; K. W. Hill; J. D. Strachan; M.G. Bell; Stacey D. Scott; R. V. Budny; E. S. Marmar; J. A. Snipes; J. L. Terry; S. H. Batha; R.E. Bell; M. Bitter; C. E. Bush; Z. Chang; D. S. Darrow; D. Ernst; E.D. Fredrickson; B. Grek; H. W. Herrmann; A. Janos; D. L. Jassby; F. C. Jobes; D.W. Johnson; L. C. Johnson; F. M. Levinton; D. R. Mikkelsen; D. Mueller; D. K. Owens; H. Park; A. T. Ramsey

Wall conditioning in the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire et al., Phys. Plasmas 2, 2176 (1995)] by injection of lithium pellets into the plasma has resulted in large improvements in deuterium–tritium fusion power production (up to 10.7 MW), the Lawson triple product (up to 1021 m−3 s keV), and energy confinement time (up to 330 ms). The maximum plasma current for access to high‐performance supershots has been increased from 1.9 to 2.7 MA, leading to stable operation at plasma stored energy values greater than 5 MJ. The amount of lithium on the limiter and the effectiveness of its action are maximized through (1) distributing the Li over the limiter surface by injection of four Li pellets into Ohmic plasmas of increasing major and minor radius, and (2) injection of four Li pellets into the Ohmic phase of supershot discharges before neutral‐beam heating is begun.


Nuclear Fusion | 1992

Simulations of deuterium-tritium experiments in TFTR

R.V. Budny; M.G. Bell; H. Biglari; M. Bitter; C.E. Bush; C. Z. Cheng; E. D. Fredrickson; B. Grek; K. W. Hill; H. Hsuan; A. Janos; D.L. Jassby; D. Johnson; L. C. Johnson; B. LeBlanc; D. McCune; David Mikkelsen; H. Park; A. T. Ramsey; Steven Anthony Sabbagh; S.D. Scott; J. Schivell; J. D. Strachan; B. C. Stratton; E. J. Synakowski; G. Taylor; M. C. Zarnstorff; S.J. Zweben

A transport code (TRANSP) is used to simulate future deuterium-tritium (DT) experiments in TFTR. The simulations are derived from 14 TFTR DD discharges, and the modelling of one supershot is discussed in detail to indicate the degree of accuracy of the TRANSP modelling. Fusion energy yields and alpha particle parameters are calculated, including profiles of the alpha slowing down time, the alpha average energy, and the Alfven speed and frequency. Two types of simulation are discussed. The main emphasis is on the DT equivalent, where an equal mix of D and T is substituted for the D in the initial target plasma, and for the D0 in the neutral beam injection, but the other measured beam and plasma parameters are unchanged. This simulation does not assume that alpha heating will enhance the plasma parameters or that confinement will increase with the addition of tritium. The maximum relative fusion yield calculated for these simulations is QDT ~ 0.3, and the maximum alpha contribution to the central toroidal β is βα(0) ~ 0.5%. The stability of toroidicity induced Alfven eigenmodes (TAE) and kinetic ballooning modes (KBM) is discussed. The TAE mode is predicted to become unstable for some of the simulations, particularly after the termination of neutral beam injection. In the second type of simulation, empirical supershot scaling relations are used to project the performance at the maximum expected beam power. The MHD stability of the simulations is discussed


Nuclear Fusion | 2009

A lower hybrid current drive system for ITER

G. T. Hoang; A. Becoulet; J. Jacquinot; Y.S. Bae; B. Beaumont; J. Belo; G. Berger-By; João P. S. Bizarro; P.T. Bonoli; Moo-Hyun Cho; J. Decker; L. Delpech; A. Ekedahl; J. Garcia; G. Giruzzi; M. Goniche; C Gormezano; D. Guilhem; J. Hillairet; F Imbeaux; F. Kazarian; C. Kessel; Sh Kim; J. G. Kwak; J.H. Jeong; J.B. Lister; X. Litaudon; R. Magne; S.L. Milora; F. Mirizzi

A 20 MW/5 GHz lower hybrid current drive (LHCD) system was initially due to be commissioned and used for the second mission of ITER, i.e. the Q = 5 steady state target. Though not part of the currently planned procurement phase, it is now under consideration for an earlier delivery. In this paper, both physics and technology conceptual designs are reviewed. Furthermore, an appropriate work plan is also developed. This work plan for design, R&D, procurement and installation of a 20 MW LHCD system on ITER follows the ITER Scientific and Technical Advisory Committee (STAC) T13-05 task instructions. It gives more details on the various scientific and technical implications of the system, without presuming on any work or procurement sharing amongst the possible ITER partners(b). This document does not commit the Institutions or Domestic Agencies of the various authors in that respect.


Physics of Plasmas | 2001

Quiescent double barrier high-confinement mode plasmas in the DIII-D tokamak

K.H. Burrell; M. E. Austin; D.P. Brennan; J. C. DeBoo; E. J. Doyle; C. Fenzi; C. Fuchs; P. Gohil; C. M. Greenfield; Richard J. Groebner; L. L. Lao; T.C. Luce; M. A. Makowski; G. R. McKee; R. A. Moyer; C. C. Petty; M. Porkolab; C. L. Rettig; T. L. Rhodes; J. C. Rost; B. W. Stallard; E. J. Strait; E. J. Synakowski; M. R. Wade; J. G. Watkins; W.P. West

High-confinement (H-mode) operation is the choice for next-step tokamak devices based either on conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the beta limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] this year have demonstrated a new operating regime, the quiescent H-mode regime, which solves these problems. We have achieved quiescent H-mode operation that is ELM-free and yet has good density and impurity control. In addition, we have demonstrated that an internal transport barrier can be produced and maintained inside the H-mode edge barrier for long periods of time (>3.5 s or >25 en...


Nuclear Fusion | 2001

Observations concerning the injection of a lithium aerosol into the edge of TFTR discharges

D.K. Mansfield; D. Johnson; B. Grek; H.W. Kugel; M.G. Bell; R.E. Bell; R.V. Budny; C.E. Bush; E.D. Fredrickson; K. W. Hill; D. Jassby; Ricardo Jose Maqueda; H. Park; A.T. Ramsey; E. J. Synakowski; G. Taylor; G. A. Wurden

A new method of actively modifying the plasma-wall interaction was tested on the Tokamak Fusion Test Reactor. A laser was used to introduce a directed lithium aerosol into the discharge scrape-off layer. The lithium introduced in this fashion ablated and migrated preferentially to the limiter contact points. This allowed the plasma-wall interaction to be influenced in situ and in real time by external means. Significant improvement in energy confinement and fusion neutron production rate as well as a reduction in the plasma Zeff have been documented in a neutral beam heated plasma. The introduction of a metallic aerosol into the plasma edge increased the internal inductance of the plasma column and also resulted in prompt heating of core electrons in ohmic plasmas. Preliminary evidence also suggests that the introduction of an aerosol leads to both edge poloidal velocity shear and edge electric field shear.


Physics of fluids. B, Plasma physics | 1993

Nondimensional transport scaling in the Tokamak Fusion Test Reactor: Is tokamak transport Bohm or gyro-Bohm?

F. W. Perkins; Cris W. Barnes; D. Johnson; S.D. Scott; M. C. Zarnstorff; M.G. Bell; R. E. Bell; C.E. Bush; B. Grek; K. W. Hill; D.K. Mansfield; H. Park; A. T. Ramsey; J. Schivell; B. C. Stratton; E. J. Synakowski

General plasma physics principles state that power flow Q(r) through a magnetic surface in a tokamak should scale as Q(r)= {32π2Rr3Te2c nea/[eB (a2−r2)2]} F(ρ*,β,ν*,r/a,q,s,r/R,...) where the arguments of F are local, nondimensional plasma parameters and nondimensional gradients. This paper reports an experimental determination of how F varies with normalized gyroradius ρ*≡(2TeMi)1/2c/eBa and collisionality ν*≡(R/r)3/2qRνe(me/ 2Te)1/2 for discharges prepared so that other nondimensional parameters remain close to constant. Tokamak Fusion Test Reactor (TFTR) [D. M. Meade et al., in Plasma Physics and Controlled Nuclear Fusion Research, 1990, Proceedings of the 13th International Conference, Washington (International Atomic Energy Agency, Vienna, 1991), Vol. 1, p. 9] L‐mode data show F to be independent of ρ* and numerically small, corresponding to Bohm scaling with a small multiplicative constant. By contrast, most theories predict gyro‐Bohm scaling: F∝ρ*. Bohm scaling implies that the largest scale size f...


Physics of Plasmas | 2000

Improved core fueling with high field side pellet injection in the DIII-D tokamak

L. R. Baylor; T.C. Jernigan; S. K. Combs; W.A. Houlberg; M. Murakami; P. Gohil; K.H. Burrell; C. M. Greenfield; R. J. Groebner; C.-L. Hsieh; R.J. La Haye; P.B. Parks; G. M. Staebler; Diii-D Team; G.L. Schmidt; D. Ernst; E. J. Synakowski; M. Porkolab

The capability to inject deuterium pellets from the magnetic high field side (HFS) has been added to the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. It is observed that pellets injected from the HFS lead to deeper mass deposition than identical pellets injected from the outside midplane, in spite of a factor of 4 lower pellet speed. HFS injected pellets have been used to generate peaked density profile plasmas [peaking factor (ne(0)/〈ne〉) in excess of 3] that develop internal transport barriers when centrally heated with neutral beam injection. The transport barriers are formed in conditions where Te∼Ti and q(0) is above unity. The peaked density profiles, characteristic of the internal transport barrier, persist for several energy confinement times. The pellets are also used to investigate transport barrier physics and modify plasma edge conditions. Transitions from L- to H-mode have been triggered by pellets, effectively lowering the H-mode threshold power by 2.4 MW. Pel...


Physics of Plasmas | 1997

Gyrofluid simulations of turbulence suppression in reversed-shear experiments on the Tokamak Fusion Test Reactor

Michael Beer; G. W. Hammett; G. Rewoldt; E. J. Synakowski; M. C. Zarnstorff; William Dorland

The confinement improvement in reversed-shear experiments on the Tokamak Fusion Test Reactor [Plasma Phys. Controlled Fusion 26, 11 (1984)] is investigated using nonlinear gyrofluid simulations including a bounce-averaged trapped electron fluid model. This model includes important kinetic effects for both ions and electrons, and agrees well with linear kinetic theory. Both reversed shear and the Shafranov shift reverse the precession drifts of a large fraction of the trapped electrons, which significantly reduces the growth rate of the trapped electron mode, found to be the dominant instability in the core. Two positive feedback transition mechanisms for the sudden improvement in core confinement are discussed: (1) Shafranov shift suppression of the trapped electron mode, and (2) turbulence suppression by radially sheared E×B flows. While both effects appear to be playing roles in the transition dynamics in most experiments, we show that Shafranov shift stabilization alone can cause a transition.

Collaboration


Dive into the E. J. Synakowski's collaboration.

Top Co-Authors

Avatar

M.G. Bell

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

G. Taylor

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

H. Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. W. Hill

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

M. C. Zarnstorff

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. Mueller

Princeton Plasma Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

R.E. Bell

Princeton Plasma Physics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge