Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. James Petersson is active.

Publication


Featured researches published by E. James Petersson.


Journal of the American Chemical Society | 2010

Thioamides as fluorescence quenching probes: minimalist chromophores to monitor protein dynamics.

Jacob M. Goldberg; Solongo Batjargal; E. James Petersson

Decreasing the size of spectroscopic probes can afford higher-resolution structural information from fluorescence experiments. Therefore, we have developed p-cyanophenylalanine (Cnf) and backbone thioamides as a fluorophore/quencher pair. Through the examination of a series of thiopeptides, we have determined the working distance for this pair to be 8-30 Å. We have also carried out a proof-of-principle protein-folding experiment in which a Cnf/thioamide-labeled version of villin headpiece HP35 was thermally unfolded while the Cnf/thioamide distance was monitored by fluorescence. For a given protein, thioamide substitutions could be used to track motions with a much greater number of measurements than for current fluorescence probes, providing a dense array of data with which to model conformational changes.


Nature Structural & Molecular Biology | 2013

Molecular basis for N-terminal acetylation by the heterodimeric NatA complex

Glen Liszczak; Jacob M. Goldberg; Håvard Foyn; E. James Petersson; Thomas Arnesen; Ronen Marmorstein

N-terminal acetylation is ubiquitous among eukaryotic proteins and controls a myriad of biological processes. Of the N-terminal acetyltransferases (NATs) that facilitate this cotranslational modification, the heterodimeric NatA complex has the most diversity for substrate selection and modifies the majority of all N-terminally acetylated proteins. Here, we report the X-ray crystal structure of the 100-kDa holo-NatA complex from Schizosaccharomyces pombe, in the absence and presence of a bisubstrate peptide-CoA–conjugate inhibitor, as well as the structure of the uncomplexed Naa10p catalytic subunit. The NatA-Naa15p auxiliary subunit contains 13 tetratricopeptide motifs and adopts a ring-like topology that wraps around the NatA-Naa10p subunit, an interaction that alters the Naa10p active site for substrate-specific acetylation. These studies have implications for understanding the mechanistic details of other NAT complexes and how regulatory subunits modulate the activity of the broader family of protein acetyltransferases.


Journal of the American Chemical Society | 2012

Native chemical ligation of thioamide-containing peptides: development and application to the synthesis of labeled α-synuclein for misfolding studies.

Solongo Batjargal; Yanxin J. Wang; Jacob M. Goldberg; Rebecca F. Wissner; E. James Petersson

Thioamide modifications of the peptide backbone are used to perturb secondary structure, to inhibit proteolysis, as photoswitches, and as spectroscopic labels. Thus far, their incorporation has been confined to single peptides synthesized on solid phase. We have generated thioamides in C-terminal thioesters or N-terminal Cys fragments and examined their compatibility with native chemical ligation conditions. Most sequence variants can be coupled in good yields with either TCEP or DTT as the reductant, though some byproducts are observed with prolonged TCEP incubations. Furthermore, we find that thioamides are compatible with thiazolidine protection of an N-terminal Cys, so that multiple ligations can be used to construct larger proteins. Since the acid-lability of the thioamide prohibits on-resin thioester synthesis using Boc chemistry, we devised a method for the synthesis of thioamide peptides with a masked C-terminal thioester that is revealed in situ. Finally, we have shown that thioamidous peptides can be coupled to expressed protein fragments to generate large proteins with backbone thioamide labels by synthesizing labeled versions of the amyloid protein α-synuclein for protein folding studies. In a proof-of-principle experiment, we demonstrated that quenching of fluorescence by thioamides can be used to track conformational changes during aggregation of labeled α-synuclein.


Journal of the American Chemical Society | 2013

Labeling proteins with fluorophore/thioamide Förster resonant energy transfer pairs by combining unnatural amino acid mutagenesis and native chemical ligation.

Rebecca F. Wissner; Solongo Batjargal; Colin M. Fadzen; E. James Petersson

We have recently shown that p-cyanophenylalanine (Cnf) and a thioamide can be used as a minimally perturbing Förster resonant energy transfer (FRET) pair to monitor protein conformation. We have also shown that thioamide analogues of natural amino acids can be incorporated into full-sized proteins through native chemical ligation. For intermolecular studies with Cnf/thioamide FRET pairs, Cnf can be incorporated into proteins expressed in Escherichia coli through unnatural amino acid mutagenesis using a Cnf-specific tRNA synthetase. For intramolecular studies, a Cnf-labeled protein fragment can be expressed in E. coli and then ligated to a thioamide-labeled peptide synthesized on solid phase. This combination of methods allows for rapid access to double-labeled proteins with a minimum of unnecessary chemical synthesis. We demonstrate the utility of this approach by studying the binding of peptides to the protein calmodulin and by determining the orientation of the N- and C-termini in the amyloidogenic protein α-synuclein.


Journal of the American Chemical Society | 2012

Minimalist probes for studying protein dynamics: thioamide quenching of selectively excitable fluorescent amino acids.

Jacob M. Goldberg; Lee C. Speight; Mark W. Fegley; E. James Petersson

Fluorescent probe pairs that can be selectively excited in the presence of Trp and Tyr are of great utility in studying conformational changes in proteins. However, the size of these probe pairs can restrict their incorporation to small portions of a protein sequence where their effects on secondary and tertiary structure can be tolerated. Our findings show that a thioamide bond-a single atom substitution of the peptide backbone-can quench fluorophores that are red-shifted from intrinsic protein fluorescence, such as acridone. Using steady-state and fluorescence lifetime measurements, we further demonstrate that this quenching occurs through a dynamic electron-transfer mechanism. In a proof-of-principle experiment, we apply this technique to monitor unfolding in a model peptide system, the villin headpiece HP35 fragment. Thioamide analogues of the natural amino acids can be placed in a variety of locations in a protein sequence, allowing one to make a large number of measurements to model protein folding.


Journal of the American Chemical Society | 2013

Efficient Synthesis and In Vivo Incorporation of Acridon-2-ylalanine, a Fluorescent Amino Acid for Lifetime and Förster Resonance Energy Transfer/Luminescence Resonance Energy Transfer Studies

Lee C. Speight; Anand K. Muthusamy; Jacob M. Goldberg; John B. Warner; Rebecca F. Wissner; Taylor S. Willi; Bradley F. Woodman; Ryan A. Mehl; E. James Petersson

The amino acid acridon-2-ylalanine (Acd) can be a valuable probe of protein conformational change because it is a long lifetime, visible wavelength fluorophore that is small enough to be incorporated during ribosomal biosynthesis. Incorporation of Acd into proteins expressed in Escherichia coli requires efficient chemical synthesis to produce large quantities of the amino acid and the generation of a mutant aminoacyl tRNA synthetase that can selectively charge the amino acid onto a tRNA. Here, we report the synthesis of Acd in 87% yield over five steps from Tyr and the identification of an Acd synthetase by screening candidate enzymes previously evolved from Methanococcus janaschii Tyr synthetase for unnatural amino acid incorporation. Furthermore, we characterize the photophysical properties of Acd, including quenching interactions with select natural amino acids and Förster resonance energy transfer (FRET) interactions with common fluorophores such as methoxycoumarin (Mcm). Finally, we demonstrate the value of incorporation of Acd into proteins, using changes in Acd fluorescence lifetimes, Mcm/Acd FRET, or energy transfer to Eu(3+) to monitor protein folding and binding interactions.


Journal of the American Chemical Society | 2013

Thioamide quenching of fluorescent probes through photoinduced electron transfer: mechanistic studies and applications.

Jacob M. Goldberg; Solongo Batjargal; Benson S. Chen; E. James Petersson

Previously we have shown that thioamides can be incorporated into proteins as minimally perturbing fluorescence-quenching probes to study protein dynamics, folding, and aggregation. Here, we show that the spontaneity of photoinduced electron transfer between a thioamide and an excited fluorophore is governed by the redox potentials of each moiety according to a Rehm-Weller-type model. We have used this model to predict thioamide quenching of various common fluorophores, and we rigorously tested more than a dozen examples. In each case, we found excellent agreement between our theoretical predictions and experimental observations. In this way, we have been able to expand the scope of fluorophores quenched by thioamides to include dyes suitable for microscopy and single-molecule studies, including fluorescein, Alexa Fluor 488, BODIPY FL, and rhodamine 6G. We describe the photochemistry of these systems and explore applications that demonstrate the utility of thioamide quenching of fluorescein to studying protein folding and proteolysis.


Journal of the American Chemical Society | 2014

Thioamide-Based Fluorescent Protease Sensors

Jacob M. Goldberg; Xing Chen; Nataline Meinhardt; Doron C. Greenbaum; E. James Petersson

Thioamide quenchers can be paired with compact fluorophores to design “turn-on” fluorescent protease substrates. We have used this method to study a variety of serine-, cysteine-, carboxyl-, and metallo-proteases, including trypsin, chymotrypsin, pepsin, thermolysin, papain, and calpain. Since thioamides quench some fluorophores red-shifted from those naturally occurring in proteins, this technique can be used for real time monitoring of protease activity in crude preparations of virtually any protease. We demonstrate the value of this method in three model applications: (1) characterization of papain enzyme kinetics using rapid-mixing experiments, (2) selective monitoring of cleavage at a single site in a peptide with multiple proteolytic sites, and (3) analysis of the specificity of an inhibitor of calpain in cell lysates.


Journal of the American Chemical Society | 2011

N-terminal protein modification using simple aminoacyl transferase substrates.

Anne M. Wagner; Mark W. Fegley; John B. Warner; Christina L. J. Grindley; Nicholas P. Marotta; E. James Petersson

Methods for synthetically manipulating protein structure enable greater flexibility in the study of protein function. Previous characterization of the Escherichia coli aminoacyl tRNA transferase (AaT) has shown that it can modify the N-terminus of a protein with an amino acid from a tRNA or a synthetic oligonucleotide donor. Here, we demonstrate that AaT can efficiently use a minimal adenosine substrate, which can be synthesized in one to two steps from readily available starting materials. We have characterized the enzymatic activity of AaT with aminoacyl adenosyl donors and found that reaction products do not inhibit AaT. The use of adenosyl donors removes the substrate limitations imposed by the use of synthetases for tRNA charging and avoids the complex synthesis of an oligonucleotide donor. Thus, our AaT donors increase the potential substrate scope and reaction scale for N-terminal protein modification under conditions that maintain folding.


ACS Nano | 2014

Surface Effects Mediate Self-Assembly of Amyloid-β Peptides

Yi-Chih Lin; E. James Petersson; Zahra Fakhraai

Here we present a label-free method for studying the mechanism of surface effects on amyloid aggregation. In this method, spin-coating is used to rapidly dry samples, in a homogeneous manner, after various incubation times. This technique allows the control of important parameters for self-assembly, such as the surface concentration. Atomic force microscopy is then used to obtain high-resolution images of the morphology. While imaging under dry conditions, we show that the morphologies of self-assembled aggregates of a model amyloid-β peptide, Aβ12–28, are strongly influenced by the local surface concentration. On mica surfaces, where the peptides can freely diffuse, homogeneous, self-assembled protofibrils formed spontaneously and grew longer with longer subsequent incubation. The surface fibrillization rate was much faster than the rates of fibril formation observed in solution, with initiation occurring at much lower concentrations. These data suggest an alternative pathway for amyloid formation on surfaces where the nucleation stage is either bypassed entirely or too fast to measure. This simple preparation procedure for high-resolution atomic force microscopy imaging of amyloid oligomers and protofibrils should be applicable to any amyloidogenic protein species.

Collaboration


Dive into the E. James Petersson's collaboration.

Top Co-Authors

Avatar

John J. Ferrie

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacob M. Goldberg

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Conor M. Haney

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

John B. Warner

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Solongo Batjargal

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Yanxin J. Wang

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge