Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Jean Finnegan is active.

Publication


Featured researches published by E. Jean Finnegan.


FEBS Letters | 2006

The evolution and diversification of Dicers in plants.

Rogério Margis; Adriana F. Fusaro; Neil A. Smith; Shaun J. Curtin; John M. Watson; E. Jean Finnegan; Peter M. Waterhouse

Most multicellular organisms regulate developmental transitions by microRNAs, which are generated by an enzyme, Dicer. Insects and fungi have two Dicer‐like genes, and many animals have only one, yet the plant, Arabidopsis, has four. Examining the poplar and rice genomes revealed that they contain five and six Dicer‐like genes, respectively. Analysis of these genes suggests that plants require a basic set of four Dicer types which were present before the divergence of mono‐ and dicotyledonous plants (∼200 million years ago), but after the divergence of plants from green algae. A fifth type of Dicer seems to have evolved in monocots.


Current Biology | 2000

Ectopic hypermethylation of flower-specific genes in Arabidopsis

Steven E. Jacobsen; Hajime Sakai; E. Jean Finnegan; Xiaofeng Cao; Elliot M. Meyerowitz

BACKGROUND Arabidopsis mutations causing genome-wide hypomethylation are viable but display a number of specific developmental abnormalities, including some that resemble known floral homeotic mutations. We previously showed that one of the developmental abnormalities present in an antisense-METHYLTRANSFERASEI (METI) transgenic line resulted from ectopic hypermethylation of the SUPERMAN gene. RESULTS Here, we investigate the extent to which hypermethylation of SUPERMAN occurs in several hypomethylation mutants, and describe methylation effects at a second gene, AGAMOUS. SUPERMAN gene hypermethylation occurred at a high frequency in several mutants that cause overall decreases in genomic DNA methylation. The hypermethylation pattern was largely similar in the different mutant backgrounds. Genetic analysis suggests that hypermethylation most likely arose either during meiosis or somatically in small sectors of the plant. A second floral development gene, AGAMOUS, also became hypermethylated and silenced in an Arabidopsis antisense-METI line. CONCLUSIONS These results suggest that ectopic hypermethylation of specific genes in mutant backgrounds that show overall decreases in methylation may be a widespread phenomenon that could explain many of the developmental defects seen in Arabidopsis methylation mutants. This resembles a phenomenon seen in cancer cells, which can simultaneously show genome-wide hypomethylation and hypermethylation of specific genes. Comparison of the methylated sequences in SUPERMAN and AGAMOUS suggests that hypermethylation could involve DNA secondary structures formed by pyrimidine-rich sequences.


Current Opinion in Genetics & Development | 2000

DNA methylation, a key regulator of plant development and other processes

E. Jean Finnegan; W. James Peacock; Elizabeth S. Dennis

Recent research has demonstrated that DNA methylation plays an integral role in regulating the timing of flowering and in endosperm development. The identification of key genes controlling these processes, the expression of which is altered in plants with low methylation, opens the way to understanding how DNA methylation regulates plant development.


Current Biology | 2007

Vernalization-Induced Trimethylation of Histone H3 Lysine 27 at FLC Is Not Maintained in Mitotically Quiescent Cells

E. Jean Finnegan; Elizabeth S. Dennis

Vernalization promotes flowering in Arabidopsis through epigenetic repression of the floral repressor, FLOWERING LOCUS C (FLC). Vernalization, like other polycomb-mediated repression events, occurs in two stages; FLC repression is established at low temperatures, then maintained during subsequent growth at 22 degrees C. Low temperatures induce VIN3 activity, which is required for changes in histone modifications and the associated FLC repression. Plant polycomb proteins FIE, VRN2, CLF, and SWN, together with VIN3, form a complex that adds histone H3 lysine 27 methylation at FLC in vernalized plants. VRN1 and LHP1 are required for maintenance of FLC repression. Tissue must be undergoing cell division during low-temperature treatments for acceleration of flowering to occur. We show that low-temperature treatments repress FLC in cells that are not mitotically active, but this repression is not fully maintained. Trimethyl-lysine 27 (K27me3), is enriched at the start of the FLC gene during the cold, before spreading across the locus after vernalization. In the absence of DNA replication, K27me3 is added to chromatin at the start of FLC but is removed on return to 22 degrees C. This suggests that DNA replication is essential for maintenance of vernalization-induced repression of FLC.


The Plant Cell | 2009

Regulation of Carotenoid Composition and Shoot Branching in Arabidopsis by a Chromatin Modifying Histone Methyltransferase, SDG8

Christopher I. Cazzonelli; Abby J. Cuttriss; Susan Cossetto; William Pye; Peter A. Crisp; James Whelan; E. Jean Finnegan; Colin Turnbull; Barry J. Pogson

Carotenoid pigments are critical for plant survival, and carotenoid composition is tuned to the developmental stage, tissue, and to environmental stimuli. We report the cloning of the CAROTENOID CHLOROPLAST REGULATORY1 (CCR1) gene. The ccr1 mutant has increased shoot branching and altered carotenoid composition, namely, reduced lutein in leaves and accumulation of cis-carotenes in dark-grown seedlings. The CCR1 gene was previously isolated as EARLY FLOWERING IN SHORT DAYS and encodes a histone methyltransferase (SET DOMAIN GROUP 8) that methylates histone H3 on Lys 4 and/or 36 (H3K4 and H3K36). ccr1 plants show reduced trimethyl-H3K4 and increased dimethyl-H3K4 surrounding the CAROTENOID ISOMERASE (CRTISO) translation start site, which correlates with low levels of CRTISO mRNA. Microarrays of ccr1 revealed the downregulation of 85 genes, including CRTISO and genes associated with signaling and development, and upregulation of just 28 genes. The reduction in CRTISO transcript abundance explains the altered carotenoid profile. The changes in shoot branching are additive with more axillary branching mutants, but the altered carotenoid profile may partially affect shoot branching, potentially by perturbed biosynthesis of the carotenoid substrates of strigolactones. These results are consistent with SDG8 regulating shoot meristem activity and carotenoid biosynthesis by modifying the chromatin surrounding key genes, including CRTISO. Thus, the level of lutein, the most abundant carotenoid in higher plants that is critical for photosynthesis and photoprotection, appears to be regulated by a chromatin modifying enzyme in Arabidopsis thaliana.


Current Biology | 2003

Posttranscriptional Gene Silencing Is Not Compromised in the Arabidopsis CARPEL FACTORY (DICER-LIKE1) Mutant, a Homolog of Dicer-1 from Drosophila

E. Jean Finnegan; Rogério Margis; Peter M. Waterhouse

Posttranscriptional silencing (PTGS) in plants, nematodes, Drosophila, and perhaps all eukaryotes operates by sequence-specific degradation or translational inhibition of the target mRNA. These processes are mediated by duplexed RNA. In Drosophila and nematodes, double-stranded (ds)RNA or self-complementary RNA is processed into fragments of approximately 21 nt by Dicer-1. These small interfering RNAs (siRNAs) serve as guides to target degradation of homologous single-stranded (ss)RNA. In some cases, the approximately 21 nt guide fragments derived from endogenous, imperfectly self-complementary RNAs cause translational inhibition of their target mRNAs, with which they have substantial, but not perfect sequence complementarity. These small temporal RNAs (stRNAs) belong to a class of noncoding microRNAs (miRNAs), 20-24 nt in length, that are found in flies, plants, nematodes, and mammals. In nematodes, the Dicer-1 enzyme catalyzes the production of both siRNA and stRNA. Mutation of the Arabidopsis Dicer-1 homolog, CARPEL FACTORY (CAF), blocks miRNA production. Here, we report that the same caf mutant does not block either PTGS or siRNA production induced by self-complementary hairpin RNA. This suggests either that this mutation only impairs miRNA formation or, more interestingly, that plants have two distinct dicer-like enzymes, one for miRNA and another for siRNAi production.


Trends in Plant Science | 2001

Role of short RNAs in gene silencing

Peter M. Waterhouse; Ming-Bo Wang; E. Jean Finnegan

Recent research has revealed the existence of an elegant defence mechanism in plants and lower eukaryotes. The mechanism, known in plants as post-transcriptional gene silencing, works through sequence-specific degradation of RNA. It appears to be directed by double-stranded RNA, associated with the production of short 21-25 nt RNAs, and spread through the plant by a diffusible signal. The short RNAs are implicated as the guides for both a nuclease complex that degrades the mRNA and a methyltransferase complex that methylates the DNA of silenced genes. It has also been suggested that these short RNAs might be the mobile silencing signal, a suggestion that has been challenged recently.


RNA | 2001

Replicating satellite RNA induces sequence-specific DNA methylation and truncated transcripts in plants.

Ming-Bo Wang; S. Varsha Wesley; E. Jean Finnegan; Neil A. Smith; Peter M. Waterhouse

Tobacco plants were transformed with a chimeric transgene comprising sequences encoding beta-glucuronidase (GUS) and the satellite RNA (satRNA) of cereal yellow dwarf luteovirus. When transgenic plants were infected with potato leafroll luteovirus (PLRV), which replicated the transgene-derived satRNA to a high level, the satellite sequence of the GUS:Sat transgene became densely methylated. Within the satellite region, all 86 cytosines in the upper strand and 73 of the 75 cytosines in the lower strand were either partially or fully methylated. In contrast, very low levels of DNA methylation were detected in the satellite sequence of the transgene in uninfected plants and in the flanking nonsatellite sequences in both infected and uninfected plants. Substantial amounts of truncated GUS:Sat RNA accumulated in the satRNA-replicating plants, and most of the molecules terminated at nucleotides within the first 60 bp of the satellite sequence. Whereas this RNA truncation was associated with high levels of satRNA replication, it appeared to be independent of the levels of DNA methylation in the satellite sequence, suggesting that it is not caused by methylation. All the sequenced GUS:Sat DNA molecules were hypermethylated in plants with replicating satRNA despite the phloem restriction of the helper PLRV. Also, small, sense and antisense approximately 22 nt RNAs, derived from the satRNA, were associated with the replicating satellite. These results suggest that the sequence-specific DNA methylation spread into cells in which no satRNA replication occurred and that this was mediated by the spread of unamplified satRNA and/or its associated 22 nt RNA molecules.


Current Opinion in Plant Biology | 2002

Epialleles - a source of random variation in times of stress.

E. Jean Finnegan

With the advent of biotechnology, epigenetics has gained in respectability. Recently, focus has moved away from the problems caused by the epigenetic silencing of transgenes to the adaptive advantages offered by stochastic epigenetic variation. Epialleles can form in response to environmental and genomic stresses, including polyploidization. They may be important in acclimation to a range of environmental conditions and in stabilizing polyploid genomes.


PLOS ONE | 2011

Vernalization-repression of Arabidopsis FLC requires promoter sequences but not antisense transcripts.

Chris A. Helliwell; Masumi Robertson; E. Jean Finnegan; Diana Mihaela Buzas; Elizabeth S. Dennis

The repression of Arabidopsis FLC expression by vernalization (extended cold) has become a model for understanding polycomb-associated epigenetic regulation in plants. Antisense and sense non-coding RNAs have been respectively implicated in initiation and maintenance of FLC repression by vernalization. We show that the promoter and first exon of the FLC gene are sufficient to initiate repression during vernalization; this initial repression of FLC does not require antisense transcription. Long-term maintenance of FLC repression requires additional regions of the gene body, including those encoding sense non-coding transcripts.

Collaboration


Dive into the E. Jean Finnegan's collaboration.

Top Co-Authors

Avatar

Elizabeth S. Dennis

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Peter M. Waterhouse

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

W. James Peacock

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Chris A. Helliwell

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Donna M. Bond

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Ming-Bo Wang

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Barry J. Pogson

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Ben Trevaskis

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Candice C. Sheldon

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Estelle Jaligot

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge