Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. K. Johansson is active.

Publication


Featured researches published by E. K. Johansson.


Physical Review C | 2009

Comprehensive {gamma}-ray spectroscopy of rotational bands in the N=Z+1 nucleus {sup 61}Zn

L.-L. Andersson; D. Rudolph; E. K. Johansson; C. Andreoiu; J. Ekman; C. Fahlander; R. du Rietz; I. Ragnarsson; D. A. Torres; M. P. Carpenter; D. Seweryniak; S. Zhu; R. J. Charity; C. J. Chiara; C. Hoel; W. Reviol; D. G. Sarantites; L. G. Sobotka; O. L. Pechenaya

The Zn-61(30)31 nucleus has been studied via the combined data of two fusion-evaporation reaction experiments using a Ar-36 beam and a Si-28 target foil. The experimental setups involved the Ge array GAMMASPHERE and neutron and charged particle detectors placed around the target position. The resulting level scheme comprises about 120 excited states connected via some 180 gamma-ray transitions. In total, seven rotational structures were identified up to I similar to 25 or higher and compared with predictions from cranked Nilsson-Strutinsky calculations.


Physical Review C | 2009

Characterization of superdeformed bands in {sup 62}Zn

Jnaneswari Gellanki; D. Rudolph; L.-L. Andersson; J. Ekman; C. Fahlander; E. K. Johansson; R. du Rietz; I. Ragnarsson; C. E. Svensson; D. S. Haslip; J. C. Waddington; C. Baktash; S. D. Paul; C. H. Yu; M. P. Carpenter; D. Seweryniak; S. Zhu; R. J. Charity; C. J. Chiara

Combined data from four fusion-evaporation reaction experiments were utilized to investigate deformed and superdeformed structures in Zn-62(30)32. Combination of the Gammasphere gamma-ray spectrometer and ancillary particle detection systems allowed for the connection of rotational bands to well-known, low-lying excited states in Zn-62, as well as spectroscopy of discrete high-spin states reaching excitation energies of E-x=42.5 MeV. Four well- or superdeformed bands in Zn-62 are characterized and described by means of cranked Nilsson-Strutinsky calculations.


NUCLEAR PHYSICS AND ASTROPHYSICS: Nuclear Physics and Astrophysics: From Stable#N#Beams to Exotic Nuclei | 2008

Classification of Superdeformed Bands in the Mass A~60 Region

L.-L. Andersson; Dirk Rudolph; B. G. Carlsson; Claes Fahlander; E. K. Johansson; I. Ragnarsson; D. A. Torres

The experimental knowledge of the Cu-61(29)32 and Zn-61(30)31 nuclei has been largely extended via the joint results from three experiments. The fusion-evaporation reaction used a Ar-36 beam and a Si-28 target foil to produce the two nuclei via the evaporation of either three protons (Cu-61) or two protons and a neutron (Zn-61). The experimental set-ups comprised the Ge-array GAMMASPHERE as well as neutron and charged-particle detectors placed around the target position. The resulting level schemes include around ten rotational superdeformed structures in each isotope. Most of them are linked to normally deformed states and in many cases spins and parities of the low-lying states in each structure have been determined. The collective structures are compared with results from configuration dependent Cranked Nilsson-Strutinsky calculations. The different structures are in general well understood from the calculation but the results do also suggest modifications of the standard Nilsson parameters in the mass A similar to 60 region. (Less)


PROTON EMITTING NUCLEI AND RELATED TOPICS: International Conference‐PROCON#N#2007 | 2007

Prompt Proton Decay in the Vicinity of 56Ni

E. K. Johansson; D. Rudolph; L.-L. Andersson; D. A. Torres; M. P. Carpenter; R. J. Charity; C. J. Chiara; J. Ekman; C. Fahlander; C. Hoel; O. L. Pechenaya; W. Reviol; R. du Rietz; D. G. Sarantites; D. Seweryniak; L. G. Sobotka; S. Zhu

A new decay mode, the so called prompt proton decay, was discovered in 1998. It has since proven to be an important decay mechanism for several neutron deficient nuclei in the A similar to 60 region. To measure with high accuracy the energies and angular distributions of these protons, a state-of-the-art charged particle detector - LuWuSiA - was developed. It was first utilized during a fusion-evaporation reaction experiment performed at Argonne National Laboratory, U.S.A. In this contribution, the characteristics of the prompt proton decay are discussed along with the special features of LuWuSiA as well as a revisit to the prompt proton decay in Cu-58.


European Physical Journal A | 2005

News on mirror nuclei in the sd and fp shells

Jörgen Ekman; L.-L. Andersson; Claes Fahlander; E. K. Johansson; R. du Rietz; Dirk Rudolph


Physical Review C | 2009

Thorough Gamma-ray and Particle Decay Investigations of 58Ni

E. K. Johansson; Dirk Rudolph; I. Ragnarsson; L.-L. Andersson; D. A. Torres; C. Andreoiu; C. Baktash; M. P. Carpenter; R. J. Charity; C. J. Chiara; J. Ekman; Claes Fahlander; O. L. Pechenaya; W. Reviol; R. du Rietz; D. G. Sarantites; D. Seweryniak; L. G. Sobotka; C. H. Yu; S. Zhu


European Physical Journal A | 2008

Extensive Gamma-ray Spectroscopy of Normally and Superdeformed Structures in 61Cu

L.-L. Andersson; Dirk Rudolph; E. K. Johansson; D. A. Torres; B. G. Carlsson; I. Ragnarsson; C. Andreoiu; C. Baktash; M. P. Carpenter; R. J. Charity; C. J. Chiara; Jörgen Ekman; Claes Fahlander; C. Hoel; O. L. Pechenaya; W. Reviol; R. du Rietz; D. G. Sarantites; D. Seweryniak; L. G. Sobotka; C. H. Yu; Shao-Jiang Zhu


European Physical Journal A | 2006

γ-ray spectroscopy of excited states in 6130Zn31

L.-L. Andersson; Dirk Rudolph; J. Ekman; Claes Fahlander; E. K. Johansson; R. du Rietz; C. J. Gross; Paul Hausladen; D. C. Radford; G. Hammond


Nuclear Physics | 2005

Exotic Decay Modes in Rotating Nuclei

Dirk Rudolph; E. K. Johansson; L.-L. Andersson; Jörgen Ekman; Claes Fahlander; R. du Rietz


Physical Review C | 2009

Comprehensive Gamma-ray Spectroscopy of Rotational Bands in the N=Z+1 Nucleus 61Zn

Lise-Lotte Andersson; I. Ragnarsson; Dirk Rudolph; E. K. Johansson; D. A. Torres; C. Andreoiu; M. P. Carpenter; R. J. Charity; C. J. Chiara; Jörgen Ekman; Claes Fahlander; C. Hoel; O. L. Pechenaya; W. Reviol; Rickard du Rietz; D. G. Sarantites; D. Seweryniak; L. G. Sobotka; S. Zhu

Collaboration


Dive into the E. K. Johansson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Seweryniak

Argonne National Laboratory

View shared research outputs
Top Co-Authors

Avatar

D. G. Sarantites

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

O. L. Pechenaya

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

R. J. Charity

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

W. Reviol

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. du Rietz

Australian National University

View shared research outputs
Top Co-Authors

Avatar

C. J. Chiara

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge