Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Kebreab is active.

Publication


Featured researches published by E. Kebreab.


The Journal of Agricultural Science | 2008

Aspects of rumen microbiology central to mechanistic modelling of methane production in cattle

J.L. Ellis; J. Dijkstra; E. Kebreab; A. Bannink; N. E. Odongo; B.W. McBride

Methane, in addition to being a significant source of energy loss to the animal that can range from 0·02 to 0·12 of gross energy intake, is one of the major greenhouse gases being targeted for reduction by the Kyoto protocol. Thus, one of the focuses of recent research in animal science has been to develop or improve existing methane prediction models in order to increase overall understanding of the system and to evaluate mitigation strategies for methane reduction. Several dynamic mechanistic models of rumen function have been developed which contain hydrogen gas balance sub-models from which methane production can be predicted. These models predict methane production with varying levels of success and in many cases could benefit from further development. Central to methane prediction is accurate volatile fatty acid prediction, representation of the competition for substrate usage within the rumen, as well as descriptions of protozoal dynamics and pH. Most methane models could also largely benefit from an expanded description of lipid metabolism and hindgut fermentation. The purpose of the current review is to identify key aspects of rumen microbiology that could be incorporated into, or have improved representation within, a model of ruminant digestion and environmental emissions.


Journal of Animal Science | 2008

Model for estimating enteric methane emissions from United States dairy and feedlot cattle

E. Kebreab; K. A. Johnson; S. L. Archibeque; D. Pape; T. Wirth

Methane production from enteric fermentation in cattle is one of the major sources of anthropogenic greenhouse gas emission in the United States and worldwide. National estimates of methane emissions rely on mathematical models such as the one recommended by the Intergovernmental Panel for Climate Change (IPCC). Models used for prediction of methane emissions from cattle range from empirical to mechanistic with varying input requirements. Two empirical and 2 mechanistic models (COWPOLL and MOLLY) were evaluated for their prediction ability using individual cattle measurements. Model selection was based on mean square prediction error (MSPE), concordance correlation coefficient, and residuals vs. predicted values analyses. In dairy cattle, COWPOLL had the lowest root MSPE and greatest accuracy and precision of predicting methane emissions (correlation coefficient estimate = 0.75). The model simulated differences in diet more accurately than the other models, and the residuals vs. predicted value analysis showed no mean bias (P = 0.71). In feedlot cattle, MOLLY had the lowest root MSPE with almost all errors from random sources (correlation coefficient estimate = 0.69). The IPCC model also had good agreement with observed values, and no significant mean (P = 0.74) or linear bias (P = 0.11) was detected when residuals were plotted against predicted values. A fixed methane conversion factor (Ym) might be an easier alternative to diet-dependent variable Ym. Based on the results, the 2 mechanistic models were used to simulate methane emissions from representative US diets and were compared with the IPCC model. The average Ym in dairy cows was 5.63% of GE (range 3.78 to 7.43%) compared with 6.5% +/- 1% recommended by IPCC. In feedlot cattle, the average Ym was 3.88% (range 3.36 to 4.56%) compared with 3% +/- 1% recommended by IPCC. Based on our simulations, using IPCC values can result in an overestimate of about 12.5% and underestimate of emissions by about 9.8% for dairy and feedlot cattle, respectively. In addition to providing improved estimates of emissions based on diets, mechanistic models can be used to assess mitigation options such as changing source of carbohydrate or addition of fat to decrease methane, which is not possible with empirical models. We recommend national inventories use diet-specific Ym values predicted by mechanistic models to estimate methane emissions from cattle.


Poultry Science | 2009

Development and evaluation of a dynamic model of calcium and phosphorus flows in layers

E. Kebreab; R.P. Kwakkel; S. Leeson; H. Darmani Kuhi; J. Dijkstra

Phosphorus is an essential nutrient involved in most metabolic processes. Most of the interest in Ca metabolism relates to eggshell formation. Although the eggshell is composed of Ca carbonate, metabolism of both Ca and P is closely related such that a deficiency in one can interfere with proper utilization of the other. To understand Ca and P metabolism properly, modeling can be of paramount importance. A new dynamic and mechanistic model of P and Ca metabolism in layers has been developed to simulate diurnal changes in Ca and P and the hourly requirement of the layer for those minerals. The model consists of 8 state variables representing Ca and P pools in the crop, stomachs, plasma, and bone. The flow equations are described by Michaelis-Menten or mass action forms. An experiment that measured Ca and P uptake in layers fed different Ca concentrations during shell-forming days was used for model evaluation. The experiment showed that Ca retained in body and egg decreased from 62.5 to 50.5% of Ca intake when the Ca in diet was increased from 25 to 45 mg/g of feed. The model simulations were in agreement with the trend. Predictions of Ca retention in bone and egg were 63.2, 56.1, and 55.3% for low, medium, and high dietary Ca concentrations. The experimental results showed that P retention in body and egg increased significantly from 11.5% of absorbable P intake at the lowest Ca inclusion concentration to 24.1% at the highest. The model also predicted an increase in P retention in bone and egg from 8.4 to 25.4% of absorbable P intake at the lowest and highest concentration of Ca inclusion, respectively. The advantage of the model is that absorption and utilization can be monitored on an hourly basis and that adjustments can be made accordingly. The model successfully showed how the availability of one mineral affects the utilization of the other and is a useful tool to evaluate feeding strategies aimed at reducing P excretion to the environment in poultry manure.


The Journal of Agricultural Science | 2003

A comparative evaluation of functions for the analysis of growth in male broilers

H. Darmani Kuhi; E. Kebreab; Secundino López

Data from six studies with male broilers fed diets covering a wide range of energy and protein were used in the current two analyses. In the first analysis, five models, specifically re-parameterized for analysing energy balance data, were evaluated for their ability to determine metabolizable energy intake at maintenance and efficiency of utilization of metabolizable energy intake for producing gain. In addition to the straight line, two types of functional form were used. They were forms describing (i) diminishing returns behaviour (monomolecular and rectangular hyperbola) and (ii) sigmoidal behaviour with a fixed point of inflection (Gompertz and logistic). These models determined metabolizable energy requirement for maintenance to be in the range 437-573 kJ/kg of body weight/day depending on the model. The values determined for average net energy requirement for body weight gain varied from 7(.)9 to 11(.)2 kJ/g of body weight. These values show good agreement with previous studies. In the second analysis, three types of function were assessed as candidates for describing the relationship between body weight and cumulative metabolizable energy intake. The functions used were: (a) monomolecular (diminishing returns behaviour), (b) Gompertz (smooth sigmoidal behaviour with a fixed point of inflection) and (c) Lopez, France and Richards (diminishing returns and sigmoidal behaviour with a variable point of inflection). The results of this analysis demonstrated that equations capable of mimicking the law of diminishing returns describe accurately the relationship between body weight and cumulative metabolizable energy intake in broilers.


The Journal of Agricultural Science | 2008

Modelling the lactation curve of dairy cows using the differentials of growth functions

M.H. Fathi Nasri; N. E. Odongo; Secundino López; A. Bannink; E. Kebreab

Descriptions of entire lactations were investigated using six mathematical equations, comprising the differentials of four growth functions (logistic, Gompertz, Schumacher and Morgan) and two other equations (Wood and Dijkstra). The data contained monthly milk yield records from 70 first, 70 second and 75 third parity Iranian Holstein cows. Indicators of fit were model behaviour, statistical evaluation and biologically meaningful parameter estimates and lactation features. Analysis of variance with equation, parity and their interaction as factors and with cows as replicates was performed to compare goodness of fit of the equations. The interaction of equation and parity was not significant for any statistics, which showed that there was no tendency for one equation to fit a given parity better than other equations. Although model behaviour analysis showed better performance of growth functions than the Wood and Dijkstra equations in fitting the individual lactation curves, statistical evaluation revealed that there was no significant difference between the goodness of fit of the different equations. Evaluation of lactation features showed that the Dijkstra equation was able to estimate the initial milk yield and peak yield more accurately than the other equations. Overall evaluation of the different equations demonstrated the potential of the differentials of simple empirical growth functions used in the current study as equations for fitting monthly milk records of Holstein dairy cattle.


The Journal of Agricultural Science | 2008

A comparative evaluation of functions for partitioning nitrogen and amino acid intake between maintenance and growth in broilers

E. Kebreab; H. Darmani Kuhi; Secundino López

The results from three types of study with broilers, namely nitrogen (N) balance, bioassays and growth experiments, provided the data used herein. Sets of data on N balance and protein accretion (bioassay studies) were used to assess the ability of the monomolecular equation to describe the relationship between (i) N balance and amino acid (AA) intake and (ii) protein accretion and AA intake. The model estimated the levels of isoleucine, lysine, valine, threonine, methionine, total sulphur AAs and tryptophan resulting in zero balance to be 58, 59, 80, 96, 23, 85 and 32 mg/kg live weight (LW)/day, respectively. These estimates show good agreement with those obtained in previous studies. For the growth experiments, four models, specifically re-parameterized for analysing energy balance data, were evaluated for their ability to determine crude protein (CP) intake at maintenance and efficiency of utilization of CP intake for producing gain. They were: a straight line, two equations representing diminishing returns behaviour (monomolecular and rectangular hyperbola) and one equation describing smooth sigmoidal behaviour with a fixed point of inflexion (Gompertz). The estimates of CP requirement for maintenance and efficiency of utilization of CP intake for producing gain varied from 5.4 to 5.9 g/kg LW/day and 0.60 to 0.76, respectively, depending on the models.


The Journal of Agricultural Science | 2004

A comparative evaluation of functions for describing the relationship between live-weight gain and metabolizable energy intake in turkeys

H. Darmani Kuhi; E. Kebreab; Secundino López

The suitability of models specifically re-parameterized for analyzing energy balance data relating metabolizable energy intake to growth rate has recently been investigated in male broilers. In this study, the more adequate of those models was applied to growing turkeys to provide estimates of their energy needs for maintenance and growth. Three functional forms were used. They were: two equations representing diminishing returns behaviour (monomolecular and rectangular hyperbola); and one equation describing smooth sigmoidal behaviour with a fixed point of inflexion (Gompertz). The models estimated the metabolizable energy requirement for maintenance in turkeys to be 359-415 kJ/kg of live-weight/day. The predicted values of average net energy requirement for producing 1 g of gain in live-weight, between 1 and 4 times maintenance, varied from 8.7 to 10.9 kJ. These results and those previously reported for broilers are a basis for accepting the general validity of these models.


The Journal of Agricultural Science | 2007

Phosphorus kinetics in lambs fed different levels of dicalcium phosphate

R. S. Dias; E. Kebreab; Dorinha Miriam Silber Schmidt Vitti; F. P. Portilho; Helder Louvandini

The purpose of the current work was to study phosphorus (P) metabolism in growing sheep supplemented with different levels of dicalcium phosphate using an extant mathematical model. Twelve male non-castrated Santa Ines sheep, weighing 23 (±2·2) kg, received a basal diet unsupplemented or supplemented with dicalcium phosphate to provide 1-5, 3·0, 4·5 g of P/animal per day (treatments Tl to T4, respectively). After 3 weeks adaptation, 7·4 MBq of 32 P was injected into the jugular vein of each animal. Samples of blood, faeces and urine were collected every day during a 7-day period and thereafter the animals were sacrificed and samples from liver, kidney, heart, muscle and bone were collected for specific activity and inorganic P determinations. The flows between gut and plasma were similar for each treatment except for Tl, which showed the lowest values for both flows (P<0·05). The amount of P accreted to soft tissue (F 42 ) was different among treatments, however net tissue retention was similar for all treatments. Total P retained was highest for T4 and lowest as well as negative for Tl and T2. Phosphorus accreted to bone (F 32 ) was different among treatments and contributed to the different net bone retentions. The highest value of F 32 was reached by animals on T4, whilst the lowest values were found for animals on Tl. Despite having the highest value of F 32 , it should be noted that animals on T4 excreted the most P in faeces. Considering concerns about environmental P pollution, it is important to be aware that the treatment which provided the highest value for net bone P retention and for F 42 also led to the highest value of P excreted in faeces. Therefore, the current study suggests that T3 provided the best P level for this category of animal since P accreted to bone and tissue indicated that P absorption was adequate to attend to P requirements.


The Journal of Agricultural Science | 2008

Farming systems methodology for efficient resource management at the farm level: a review from an Indian perspective

U. K. Behera; C. M. Yates; E. Kebreab

Farming systems research is a multi-disciplinary holistic approach to solve the problems of small farms. Small and marginal farmers are the core of the Indian rural economy constituting 0·80 of the total farming community but possessing only 0·36 of the total operational land. The declining trend of per capita land availability poses a serious challenge to the sustainability and profitability of farming. Under such conditions, it is appropriate to integrate land-based enterprises such as dairy, fishery, poultry, duckery, apiary, field and horticultural cropping within the farm, with the objective of generating adequate income and employment for these small and marginal farmers under a set of farm constraints and varying levels of resource availability and opportunity. The integration of different farm enterprises can be achieved with the help of a linear programming model. For the current review, integrated farming systems models were developed, by way of illustration, for the marginal, small, medium and large farms of eastern India using linear programming. Risk analyses were carried out for different levels of income and enterprise combinations. The fishery enterprise was shown to be less risk-prone whereas the crop enterprise involved greater risk. In general, the degree of risk increased with the increasing level of income. With increase in farm income and risk level, the resource use efficiency increased. Medium and large farms proved to be more profitable than small and marginal farms with higher level of resource use efficiency and return per Indian rupee (Rs) invested. Among the different enterprises of integrated farming systems, a chain of interaction and resource flow was observed. In order to make farming profitable and improve resource use efficiency at the farm level, the synergy among interacting components of farming systems should be exploited. In the process of technology generation, transfer and other developmental efforts at the farm level (contrary to the discipline and commodity-based approaches which have a tendency to be piecemeal and in isolation), it is desirable to place a whole-farm scenario before the farmers to enhance their farm income, thereby motivating them towards more efficient and sustainable farming.


The Journal of Agricultural Science | 2009

Rumen phosphorus metabolism in sheep.

R. S. Dias; Secundino López; Tanimara Soares da Silva; René M Patiño Pardo; J.C. Silva Filho; D.M.S.S. Vitti; E. Kebreab

The objective of the present study was to examine the effect of the level of phosphorus (P) intake on ruminal P kinetics in sheep. Twelve Santa Ines male sheep (average body weight 36 kg) were fed a basal diet consisting of roughage (coast cross hay), concentrate mixture (cassava meal, soya bean meal and urea) and a mineral premix. The treatments consisted of the basal diet supplemented with 0, 1·5, 3 or 4·5 g/kg dry matter (DM) of mono-ammonium phosphate to provide increasing P levels representing treatments T0, T1, T2 and T3, respectively. The P content of experimental diets was 1·5; 2·0; 2·5 and 3·0 g P/kg DM, and considered highly deficient, deficient, adequate and in excess, re- spectively, compared with standard recommended allowances. Animals were injected with 32 P and thereafter samples of blood were collected over 7 days, while samples of rumen fluid and saliva were collected 4 and 6 days after injection. Phosphorus intake affected P concentration in ruminal fluid, whereas P concentration in saliva was not affected. The values for P turnover time in the rumen were 1-42, 1·23, 1·18 and 1·04 days, whereas values of endogenous P entry into the rumen were 1·05, 1·37, 1·53 and 1·91 g/day for T0, T1, T2 and T3, respectively, both affected by P intake. The specific activity (SA) of P in saliva, rumen and plasma were also all affected by P intake. The relationship between saliva and rumen SA emphasizes that most endogenous P in the rumen came from saliva. The possibility of an extra P source besides saliva contributing to endogenous P in the rumen is discussed. It is concluded from the results that, regardless of P intake, the flow of endogenous P into the rumen contributes to ensure a minimum supply of this essential element, which may be important in matching the requirements of the rumen microbes.

Collaboration


Dive into the E. Kebreab's collaboration.

Top Co-Authors

Avatar

Secundino López

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

J. Dijkstra

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

A. Bannink

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D.M.S.S. Vitti

University of São Paulo

View shared research outputs
Researchain Logo
Decentralizing Knowledge