Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Kerins is active.

Publication


Featured researches published by E. Kerins.


Monthly Notices of the Royal Astronomical Society | 2006

Classical novae from the POINT-AGAPE microlensing survey of M31 : II. Rate and statistical characteristics of the nova population

M. J. Darnley; M. F. Bode; E. Kerins; A. M. Newsam; Jin H. An; P. Baillon; Vasily Belokurov; S. Calchi Novati; B. J. Carr; M. Crézé; N. W. Evans; Y. Giraud-Heraud; A. Gould; Paul C. Hewett; Ph. Jetzer; J. Kaplan; S. Paulin-Henriksson; Stephen J. Smartt; Y. Tsapras; M. J. Weston

The POINT-AGAPE (Pixel-lensing Observations with the Isaac Newton Telescope- Andromeda Galaxy Amplified Pixels Experiment) survey is an optical search for gravitational microlensing events towards the Andromeda galaxy (M31). As well as microlensing, the survey is sensitive to many different classes of variable stars and transients. In our first paper of this series, we reported the detection of 20 classical novae (CNe) observed in Sloan rand i � passbands. An analysis of the maximum magnitude versus rate of decline (MMRD) relationship in M31 is performed using the resulting POINT-AGAPE CN catalogue. Within the limits of the uncertainties of extinction internal to M31, good fits are produced to the MMRD in two filters. The MMRD calibration is the first to be performed for Sloan rand ifilters. However, we are unable to verify that novae have the same absolute magnitude 15 d after peak (the t15 relationship), nor any similar relationship for either Sloan filter. The subsequent analysis of the automated pipeline has provided us with the most thorough knowledge of the completeness of a CN survey to date. In addition, the large field of view of the survey has permitted us to probe the outburst rate well into the galactic disc, unlike previous CCD imaging surveys. Using this analysis, we are able to probe the CN distribution of M31 and evaluate the global nova rate. Using models of the galactic surface brightness of M31, we show that the observed CN distribution consists of a separate bulge and disc population. We also show that the M31 bulge CN eruption rate per unit rflux is more than five times greater


Monthly Notices of the Royal Astronomical Society | 2004

Classical novae from the POINT–AGAPE microlensing survey of M31 – I. The nova catalogue

M. J. Darnley; M. F. Bode; E. Kerins; A. M. Newsam; Jin H. An; P. Baillon; S. Calchi Novati; B. J. Carr; M. Crézé; N. W. Evans; Y. Giraud-Heraud; A. Gould; Paul C. Hewett; Ph. Jetzer; J. Kaplan; S. Paulin-Henriksson; Stephen J. Smartt; C. S. Stalin; Y. Tsapras

The POINT-AGAPE (Pixel-lensing Observations with the Isaac Newton Telescope-Andromeda Galaxy Amplified Pixels Experiment) survey is an optical search for gravitational microlensing events towards the Andromeda galaxy (M31). As well as microlensing, the survey is sensitive to many different classes of variable stars and transients. Here we describe the automated detection and selection pipeline used to identify M31 classical novae (CNe) and we present the resulting catalogue of 20 CN candidates observed over three seasons. CNe are observed both in the bulge region as well as over a wide area of the M31 disc. Nine of the CNe are caught during the final rise phase and all are well sampled in at least two colours. The excellent light-curve coverage has allowed us to detect and classify CNe over a wide range Qf speed class, from very fast to very slow. Among the light curves is a moderately fast CN exhibiting entry into a deep transition minimum, followed by its final decline. We have also observed in detail a very slow CN which faded by only 0.01 mag d -1 over a 150-d period. We detect other interesting variable objects, including one of the longest period and most luminous Mira variables. The CN catalogue constitutes a uniquely well-sampled and objectively-selected data set with which to study the statistical properties of CNe in M31, such as the global nova rate, the reliability of novae as standard-candle distance indicators and the dependence of the nova population on stellar environment. The findings of this statistical study will be reported in a follow-up paper.


Monthly Notices of the Royal Astronomical Society | 2004

The POINT-AGAPE Survey - I. The variable stars in M31

Jin H. An; N. W. Evans; Paul C. Hewett; P. Baillon; S. Calchi Novati; B. J. Carr; M. Crézé; Y. Giraud-Heraud; A. Gould; Ph. Jetzer; J. Kaplan; E. Kerins; S. Paulin-Henriksson; Stephen J. Smartt; C. S. Stalin; Y. Tsapras

For the purposes of identifying microlensing events, the POINT-AGAPE collaboration has been monitoring the Andromeda galaxy (M31) for three seasons (1999-2001) with the Wide Field Camera on the Isaac Newton Telescope. In each season, data are taken for one hour per night for roughly sixty nights during the six months that M31 is visible. The two 33 ′ ×33 ′ fields of view straddle the central bulge, northwards and sou thwards. We have calculated the locations, periods and brightness of 35414 variable stars i n M31 as a by-product of the microlensing search. The variables are classified according t o their period and brightness. Rough correspondences with classical types of variable star (suc h as population I and II Cepheids, Miras and semi-regular long-period variables) are established. The spatial distribution of population I Cepheids is clearly associated with the spiral arm s, while the central concentration of the Miras and long-period variables varies noticeably, t he brighter and the shorter period Miras being much more centrally concentrated. A crucial role in the microlensing experiment is played by the asymmetry signal ‐ the excess of events expected in the southern or more distant fiel ds as measured against those in the northern or nearer fields. It was initially assumed that t he variable star populations in M31 would be symmetric with respect to the major axis, and thus variable stars would not be a serious contaminant for measuring the microlensing asymmetry signal. We demonstrate that this assumption is not correct. All the variable star distributi ons are asymmetric primarily because of the effects of differential extinction associated with the dust lanes. The siz e and direction of the asymmetry of the variable stars is measured as a function of period and brightness. The implications of this discovery for the successful completi on of the microlensing experiments towards M31 are discussed.


The Astrophysical Journal | 2004

The Anomaly in the Candidate Microlensing Event PA-99-N2

Jin H. An; N. W. Evans; E. Kerins; P. Baillon; S. Calchi Novati; B. J. Carr; M. Crézé; Y. Giraud-Heraud; A. Gould; Paul C. Hewett; Ph. Jetzer; J. Kaplan; S. Paulin-Henriksson; Stephen J. Smartt; Y. Tsapras; David Valls-Gabaud

The light curve of PA-99-N2, one of the recently announced microlensing candidates toward M31, shows small deviations from the standard Paczynski form. We explore a number of possible explanations, including correlations with the seeing, the parallax effect, and a binary lens. We find that the observations are consistent with an unresolved red giant branch or asymptotic giant branch star in M31 being microlensed by a binary lens. We find that the best-fit binary lens mass ratio is ~1.2 × 10-2, which is one of the most extreme values found for a binary lens so far. If both the source and lens lie in the M31 disk, then the standard M31 model predicts the probable mass range of the system to be 0.02-3.6 ☉ (95% confidence limit). In this scenario, the mass of the secondary component is therefore likely to be below the hydrogen-burning limit. On the other hand, if a compact halo object in M31 is lensing a disk or spheroid source, then the total lens mass is likely to lie between 0.09 and 32 ☉, which is consistent with the primary being a stellar remnant and the secondary being a low-mass star or brown dwarf. The optical depth (or, alternatively, the differential rate) along the line of sight toward the event indicates that a halo lens is more likely than a stellar lens, provided that dark compact objects comprise no less than 15% (or 5%) of halos.


Monthly Notices of the Royal Astronomical Society | 2006

The Angstrom Project: a microlensing survey of the structure and composition of the bulge of the Andromeda galaxy

E. Kerins; M. J. Darnley; J. P. Duke; A. Gould; Cheongho Han; Young-Beom Jeon; A. M. Newsam; Byeong-Gon Park

The Andromeda Galaxy Stellar Robotic Microlensing Project (The Angstrom Project) aims to use stellar microlensing events to trace the structure and composition of the inner regions of the Andromeda Galaxy (M31). We present microlensing rate and time-scale predictions and spatial distributions for stellar and sub-stellar lens populations in combined disc and barred bulge models of M31. We show that at least half of the stellar microlenses in and around the bulge are expected to have characteristic durations between 1 and 10 d, rising to as much as 80 per cent for brown-dwarf dominated mass functions. These short-duration events are mostly missed by current microlensing surveys that are looking for Macho candidates in the M31 dark matter halo. Our models predict that an intensive monitoring survey programme, such as Angstrom, which will be able to detect events of durations upwards of a day, could detect around 30 events per season within ∼5 arcmin of the M31 centre due to ordinary low-mass stars and remnants. This yield increases to more than 60 events for brown-dwarf dominated mass functions. The overall number of events and their average duration are sensitive diagnostics of the bulge mass, in particular the contribution of low-mass stars and brown dwarfs. The combination of an inclined disc, an offset bar-like bulge, and differences in the bulge and disc luminosity functions results in a four-way asymmetry in the number of events expected in each quadrant defined by the M31 disc axes. The asymmetry is sensitive to the bar prolongation, orientation and mass.


The Astrophysical Journal | 2006

The Possibility of Detecting Planets in the Andromeda Galaxy

Sun-Ju Chung; Doeon Kim; M. J. Darnley; J. P. Duke; A. Gould; C. Han; Young-Beom Jeon; E. Kerins; A. M. Newsam; B.-G. Park

The Angstrom project is using a global network of 2 m class telescopes to conduct a high-cadence pixel microlensing survey of the bulge of the Andromeda galaxy (M31), with the primary aim of constraining its underlying bulge mass distribution and stellar mass function. Here we investigate the feasibility of using such a survey to detect planets in M31. We estimate the efficiency of detecting signals produced by planets with various masses and separations from the host star. We find that for a ~5MJ planet that is located within the lensing zone (~1-3 AU), detection is possible above 3 σ with detection efficiency ~6%. This corresponds to the yearly detection rate of ~3fLZ planets, where fLZ is the probability that a planet exists in the lensing zone. It is expected that most events with detectable planets are associated with giant source stars, and thus source size will have a significant effect on the planet detection efficiency. We also find that the planetary perturbations will be in nearly all cases caused by central caustics, and thus observational strategies focusing on these central perturbations would maximize planet detections. A dramatic improvement in the efficiency of ~30%-50% is expected if follow-up observations on an 8 m telescope are made possible by a real-time alert system.


The Astrophysical Journal | 2003

THEORY OF PIXEL LENSING TOWARD M31. II. THE VELOCITY ANISOTROPY AND FLATTENING OF THE MACHO DISTRIBUTION

E. Kerins; Jin H. An; N. W. Evans; P. Baillon; B. J. Carr; Y. Giraud-Heraud; A. Gould; Paul C. Hewett; J. Kaplan; S. Paulin-Henriksson; S. J. Smartt; Y. Tsapras; David Valls-Gabaud

The POINT-AGAPE collaboration is currently searching for massive compact halo objects (MACHOs) toward the Andromeda galaxy (M31). The survey aims to exploit the high inclination of the M31 disk, which causes an asymmetry in the spatial distribution of M31 MACHOs. Here, we investigate the effects of halo velocity anisotropy and flattening on the asymmetry signal using simple halo models. For a spherically symmetric and isotropic halo, we find that the underlying pixel lensing rate in far-disk M31 MACHOs is more than 5 times the rate of near-disk events. We find that the asymmetry is further increased by about 30% if the MACHOs occupy radial orbits rather than tangential orbits, but it is substantially reduced if the MACHOs lie in a flattened halo. However, even for halos with a minor- to major-axis ratio of q = 0.3, the number of M31 MACHOs in the far side outnumber those in the near side by a factor of ~2. There is also a distance asymmetry, in that the events on the far side are typically farther from the major axis. We show that, if this positional information is exploited in addition to number counts, then the number of candidate events required to confirm asymmetry for a range of flattened and anisotropic halo models is achievable, even with significant contamination by variable stars and foreground microlensing events. For pixel lensing surveys that probe a representative portion of the M31 disk, a sample of around 50 candidates is likely to be sufficient to detect asymmetry within spherical halos, even if half the sample is contaminated, or to detect asymmetry in halos as flat as q = 0.3, provided less than a third of the sample comprises contaminants. We also argue that, provided its mass-to-light ratio is less than 100, the recently observed stellar stream around M31 is not problematic for the detection of asymmetry.


The Astronomical Journal | 2005

AUTOMATED DETECTION OF CLASSICAL NOVAE WITH NEURAL NETWORKS

Stephen M. Feeney; Vasily Belokurov; N. W. Evans; J. An; Paul C. Hewett; M. F. Bode; M. J. Darnley; E. Kerins; P. Baillon; B. J. Carr; S. Paulin-Henriksson; A. Gould

The POINT-AGAPE collaboration surveyed M31 with the primary goal of optical detection of microlensing events, yet its data catalog is also a prime source of light curves of variable and transient objects, including classical novae (CNe). A reliable means of identification, combined with a thorough survey of the variable objects in M31, provides an excellent opportunity to locate and study an entire galactic population of CNe. This paper presents a set of 440 neural networks, working in 44 committees, designed specifically to identify fast CNe. The networks are developed using training sets consisting of simulated novae and POINT-AGAPE light curves in a novel variation on K-fold cross validation and use the binned, normalized power spectra of the light curves as input units. The networks successfully identify 9 of the 13 previously identified M31 CNe within their optimal working range (and 11 out of 13 if the network error bars are taken into account). The networks provide a catalogue of 19 new candidate fast CNe, of which four are strongly favored.


Astronomy and Astrophysics | 2005

POINT-AGAPE Pixel Lensing Survey of M31 : Evidence for a MACHO contribution to Galactic Halos

S. Calchi Novati; S. Paulin-Henriksson; J. An; P. Baillon; Vasily Belokurov; B. J. Carr; M. Crézé; N. W. Evans; Y. Giraud-Heraud; A. Gould; Paul C. Hewett; Ph. Jetzer; J. Kaplan; E. Kerins; S. J. Smartt; C. S. Stalin; Y. Tsapras; M. J. Weston


Astronomy and Astrophysics | 2003

The POINT-AGAPE survey: 4 high signal-to-noise microlensing candidates detected towards M 31

S. Paulin-Henriksson; P. Baillon; A. Bouquet; B. J. Carr; M. Crézé; N. W. Evans; Y. Giraud-Heraud; A. Gould; Paul C. Hewett; J. Kaplan; E. Kerins; Y. Le Du; A.L. Melchior; S. J. Smartt; David Valls-Gabaud

Collaboration


Dive into the E. Kerins's collaboration.

Top Co-Authors

Avatar

A. Gould

Korea Astronomy and Space Science Institute

View shared research outputs
Top Co-Authors

Avatar

B. J. Carr

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar

N. W. Evans

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge