Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Lindfors is active.

Publication


Featured researches published by E. Lindfors.


Astronomy and Astrophysics | 2012

Simultaneous Planck, Swift, and Fermi observations of X-ray and γ-ray selected blazars

P. Giommi; G. Polenta; A. Lähteenmäki; D. J. Thompson; Milvia Capalbi; S. Cutini; D. Gasparrini; J. González-Nuevo; J. León-Tavares; M. López-Caniego; M. N. Mazziotta; C. Monte; Matteo Perri; S. Rainò; G. Tosti; A. Tramacere; Francesco Verrecchia; Hugh D. Aller; M. F. Aller; E. Angelakis; D. Bastieri; A. Berdyugin; A. Bonaldi; L. Bonavera; C. Burigana; D. N. Burrows; S. Buson; E. Cavazzuti; Guido Chincarini; S. Colafrancesco

We present simultaneous Planck, Swift, Fermi, and ground-based data for 105 blazars belonging to three samples with flux limits in the soft X-ray, hard X-ray, and -ray bands, and we compare our results to those of a companion paper presenting simultaneous Planck and multi-frequency observations of 104 radio-loud northern active galactic nuclei selected at radio frequencies. While we confirm several previous results, our unique data set has allowed us to demonstrate that the selection method strongly influences the results, producing biases that cannot be ignored. Almost all the BL Lac objects have been detected by Fermi Large Area Telescope (LAT), whereas 30 to 40% of the flat-spectrum radio quasars (FSRQs) in the radio, soft X-ray, and hard X-ray selected samples are still below the -ray detection limit even after integrating 27 months of Fermi-LAT data. The radio to sub-millimetre spectral slope of blazars is quite flat, withh i 0 up to about 70 GHz, above which it steepens toh i 0:65. BL Lacs have significantly flatter spectra than FSRQs at higher frequencies. The distribution of the rest-frame synchrotron peak frequency ( S ) in the spectral energy distribution (SED) of FSRQs is the same in all the blazar samples withh S i = 10 13:1 0:1 Hz, while the mean inverse-Compton peak frequency,h IC i, ranges from 10 21 to 10 22 Hz. The distributions of S and of IC of BL Lacs are much broader and are shifted to higher energies than those of FSRQs; their shapes strongly depend on the selection method. The Compton dominance of blazars ranges from less than 0.2 to nearly 100, with only FSRQs reaching values larger than about 3. Its distribution is broad and depends strongly on the selection method, with -ray selected blazars peaking at 7 or more, and radio-selected blazars at values close to 1, thus implying that the common assumption that the blazar power budget is largely dominated by high-energy emission is a selection e ect. A comparison of our multi-frequency data with theoretical predictions shows that simple homogeneous SSC models cannot explain the simultaneous SEDs of most of the -ray detected blazars in all samples. The SED of the blazars that were not detected by Fermi-LAT may instead be consistent with SSC emission. Our data challenge the correlation between bolometric luminosity and S predicted by the blazar sequence.


Astronomy and Astrophysics | 2008

Detection of the host galaxy of S5 0716+714

K. Nilsson; T. Pursimo; A. Sillanpää; L. Takalo; E. Lindfors

We have acquired a deep i-band image of the BL Lacertae object S5 0716+714 while the target was in an low optical state. Due to the faintness of the nucleus, we were able to detect the underlying host galaxy. The host galaxy is measured to have an I-band magnitude of 17.5 ± 0. 5a nd an effective radius of (2.7 ± 0.8) arcsec. Using the host galaxy as a “standard candle”, we derive z = 0.31 ± 0.08 (1σ error) for the host galaxy of S5 0716+714. This redshift is consistent with the redshift z = 0.26 determined by spectroscopy for 3 galaxies close to S5 0716+714. The effective radius at z = 0.31 would be 12 ± 4 kpc, which is consistent with values obtained for BL Lac host galaxies. An optical spectrum acquired during the same epoch shows no identifiable spectral lines.


Astronomy and Astrophysics | 2007

Host galaxy subtraction of TeV candidate BL Lacertae objects

K. Nilsson; M. Pasanen; L. Takalo; E. Lindfors; A. Berdyugin; S. Ciprini; J. Pforr

Context. Photometric monitoring of active galactic nuclei is often complicated by the presence of a strong host galaxy component, which adds unwanted flux to the measurement and introduces a seeing-dependence to the flux that can plaque e.g. microvariability studies. We are currently monitoring a sample of 24 TeV candidate BL Lacertae objects, many of which exhibit a prominent host galaxy component, using differential aperture photometry. Aims. In order to study our light curves free from the above effects, we have derived the host galaxy flux in differential aperture photometry as a function of aperture radius and FWHM for 20 resolved sources in our sample. Methods. We created accurate surface brightness models of the targets and any significant nearby sources using high-resolution R-band imaging obtained at the Nordic Optical Telescope (NOT) and performed differential aperture photometry of the models over a grid of aperture radii and FWHM values. Results. The results are given as correction tables, that list the fluxes (in mJy) of all “contaminating” sources (host galaxy + significant nearby objects) as a function of aperture radius and FWHM. We found that the derived fluxes depend strongly on aperture radius, but the FWHM has only a minor effect (a few percent). We also discuss the implications of our findings to optical monitoring programs and potential sources of error in our derived fluxes. During this work we have also constructed new calibration star sequences for 9 objects and present the finding charts and calibrated magnitudes.


Astronomy and Astrophysics | 2008

Multifrequency monitoring of the blazar 0716+714 during the GASP-WEBT-AGILE campaign of 2007

M. Villata; Claudia Maria Raiteri; V. M. Larionov; Omar M. Kurtanidze; K. Nilsson; M. F. Aller; M. Tornikoski; A. Volvach; Hugh D. Aller; A. A. Arkharov; U. Bach; P. Beltrame; G. Bhatta; C. S. Buemi; M. Böttcher; P. Calcidese; D. Carosati; A. J. Castro-Tirado; D. Da Rio; A. Di Paola; M. Dolci; E. Forné; A. Frasca; V. A. Hagen-Thorn; J. Heidt; D. Hiriart; Martin Jelinek; G. N. Kimeridze; T. S. Konstantinova; E. N. Kopatskaya

Aims. Since the CGRO operation in 1991–2000, one of the primary unresolved questions about the blazar γ -ray emission has been its possible correlation with the low-energy (in particular optical) emission. To help answer this problem, the Whole Earth Blazar Telescope (WEBT) consortium has organized the GLAST-AGILE Support Program (GASP) to provide the optical-to-radio monitoring data to be compared with the γ -ray detections by the AGILE and GLAST satellites. This new WEBT project started in early September 2007, just before a strong γ -ray detection of 0716+714 by AGILE. Methods. We present the GASP-WEBT optical and radio light curves of this blazar obtained in July–November 2007, about various AGILE pointings at the source. We construct NIR-to-UV spectral energy distributions (SEDs), by assembling GASP-WEBT data together with UV data from the Swift ToO observations of late October. Results. We observe a contemporaneous optical-radio outburst, which is a rare and interesting phenomenon in blazars. The shape of the SEDs during the outburst appears peculiarly wavy because of an optical excess and a UV drop-and-rise. The optical light curve is well sampled during the AGILE pointings, showing prominent and sharp flares. A future cross-correlation analysis of the optical and AGILE data will shed light on the expected relationship between these flares and the γ -ray events.


Astronomy and Astrophysics | 2008

Results of WEBT, VLBA and RXTE monitoring of 3C 279 during 2006-2007 ⋆

V. M. Larionov; S. G. Jorstad; Alan P. Marscher; Claudia Maria Raiteri; M. Villata; I. Agudo; M. F. Aller; A. A. Arkharov; I. M. Asfandiyarov; U. Bach; A. Berdyugin; C. S. Buemi; Alok C. Gupta; M. A. Gurwell; V. A. Hagen-Thorn; M. A. Ibrahimov; B. Jordan; M. Kamada; T. S. Konstantinova; E. N. Kopatskaya; Y. Y. Kovalev; Yu. A. Kovalev; Omar M. Kurtanidze; L. Lanteri; L. V. Larionova; P. Leto; E. Lindfors; E. Marilli; I. M. McHardy; M. G. Mingaliev

Context. The quasar 3C 279 is among the most extreme blazars in terms of luminosity and variability of flux at all wavebands. Its vari ations in flux and polarization are quite complex and therefore require intensive monitoring observations at multiple wavebands to characterise and interpret the observed changes. Aims. In this paper, we present radio-to-optical data taken by the WEBT, supplemented by our VLBA and RXTE observations, of 3C 279. Our goal is to use this extensive database to draw inferences regarding the physics of the relativistic jet. Methods. We assemble multifrequency light curves with data from 30 ground-based observatories and the space-based instruments SWIFT (UVOT) and RXTE, along with linear polarization vs. time in the optical R band. In addition, we present a sequence of 22 images (with polarization vectors) at 43 GHz at resolution 0.15 milliarcse c, obtained with the VLBA. We analyse the light curves and polarization, as well as the spectral energy distributions at different epochs, corresponding to different brightness states. Results. We find that the IR-optical-UV continuum spectrum of the vari able component corresponds to a power law with a constant slope of−1.6, while in the 2.4‐10 keV X-ray band it varies in slope from−1.1 to−1.6. The steepest X-ray spectrum occurs at a flux minimum. Durin g a decline in flux from maximum in late 2006, the optical and 43 GHz core po larization vectors rotate by∼ 300 ◦ . Conclusions. The continuum spectrum agrees with steady injection of relativistic electrons with a power-law energy distribution of slope−3.2 that is steepened to−4.2 at high energies by radiative losses. The X-ray emission at flux minimum comes most likely from a new component that starts in an upstream section of the jet where inverse Compton scattering of seed photons from outside the jet is important. The rotation of the polarization vector implies that the jet contains a helical magnetic field that extends ∼ 20 pc past the 43 GHz core.


The Astrophysical Journal | 2011

THE BRIGHTEST GAMMA-RAY FLARING BLAZAR IN THE SKY: AGILE AND MULTI-WAVELENGTH OBSERVATIONS OF 3C 454.3 DURING 2010 NOVEMBER

S. Vercellone; E. Striani; V. Vittorini; I. Donnarumma; Luigi Pacciani; G. Pucella; C. M. Raiteri; M. Villata; Patrizia Romano; M. Fiocchi; A. Bazzano; V. Bianchin; C. Ferrigno; L. Maraschi; E. Pian; M. Türler; P. Ubertini; A. Bulgarelli; Andrew W. Chen; A. Giuliani; F. Longo; G. Barbiellini; M. Cardillo; Paolo Walter Cattaneo; E. Del Monte; M. Feroci; A. Ferrari; Fabio Fuschino; F. Gianotti; M. Giusti

Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one ?-ray flare per year, becoming the most active ?-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, Swift, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary ?-ray flare of 3C 454.3 which occurred in 2010 November. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E >100?MeV) of Fp ? = (6.8 ? 1.0) ? 10?5?photons cm?2 s?1? on a timescale of about 12 hr, more than a factor of six higher than the flux of the brightest steady ?-ray source, the Vela pulsar, and more than a factor of three brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make possible a thorough study of the present event: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after the ?-ray flare, we find that the radio, optical, and X-ray emission varies within a factor of 2-3, whereas the ?-ray flux by a factor of 10. This remarkable behavior is modeled by an external Compton component driven by a substantial local enhancement of soft seed photons.


The Astrophysical Journal | 2007

The WEBT Campaign on the Blazar 3C 279 in 2006

M. Böttcher; S. Basu; M. Joshi; M. Villata; Akira Arai; N. Aryan; I. M. Asfandiyarov; U. Bach; A. Berduygin; M. Blaek; C. S. Buemi; A. J. Castro-Tirado; A. de Ugarte Postigo; A. Frasca; L. Fuhrmann; V. A. Hagen-Thorn; G. Henson; T. Hovatta; R. Hudec; M. A. Ibrahimov; Yuko Ishii; R. Z. Ivanidze; Martin Jelinek; M. Kamada; B. Z. Kapanadze; M. Katsuura; D. Kotaka; Y. Y. Kovalev; Yu. A. Kovalev; P. Kubánek

Thequasar3C279wasthetargetof anextensivemultiwavelengthmonitoringcampaignfrom2006Januarythrough April. An optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration was organized around target-of-opportunity X-ray and soft � -ray observations with Chandra and INTEGRAL in 2006 midJanuary, with additional X-ray coverage by RXTE and Swift XRT. In this paper we focus on the results of the WEBT campaign. Thesource exhibited substantial variability of opticalflux and spectralshape,witha characteristictimescale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other, while there was no obvious correlation between the optical and radio variability. After the ToO trigger, the optical flux


Astronomy and Astrophysics | 2005

The WEBT campaign to observe AO 0235+16 in the 2003-2004 observing season. Results from radio-to-optical monitoring and XMM-Newton observations

C. M. Raiteri; M. Villata; M. A. Ibrahimov; V. M. Larionov; M. Kadler; Hugh D. Aller; Margo F. Aller; Y. Y. Kovalev; L. Lanteri; K. Nilsson; I. E. Papadakis; T. Pursimo; Gustavo E. Romero; H. Teräsranta; M. Tornikoski; A. A. Arkharov; David A. Barnaby; A. Berdyugin; M. Böttcher; K. Byckling; Michael T. Carini; D. Carosati; Sergio A. Cellone; S. Ciprini; J. A. Combi; S. Crapanzano; R. Crowe; A. Di Paola; M. Dolci; L. Fuhrmann

A multiwavelength campaign to observe the BL Lac object AO 0235+16 (z = 0.94) was set up by the Whole Earth Blazar Telescope (WEBT) collaboration during the observing seasons 2003-2004 and 2004-2005, involving radio, near-IR and optical photometric monitoring, VLBA monitoring, optical spectral monitoring, and three pointings by the XMM-Newton satellite. Here we report on the results of the first season, which involved the participation of 24 optical and near-IR telescopes and 4 radio telescopes, as well as the first XMM-Newton pointing, which occurred on January 18-19, 2004. Unpublished data from previous epochs were also collected (from 5 optical-NIR and 3 radio telescopes), in order to fill the gap between the end of the period presented in Raiteri et al. (2001) and the start of the WEBT campaign. The contribution of the southern AGN, 2 arcsec distant from the source, is taken into account. It is found to especially affect the blue part of the optical spectrum when the source is faint. In the optical and near-IR the source has been very active in the last 3 years, although it has been rather faint most of the time, with noticeable variations of more than a magnitude over a few days. In contrast, in the radio bands it appears to have been quiescent since early 2000. The major radio (and optical) outburst predicted to peak around February-March 2004 (with a six month uncertainty) has not occurred yet. When comparing our results with the historical light curves, two different behaviours seem to characterize the optical outbursts: only the major events present a radio counterpart. The X-ray spectra obtained by the three EPIC detectors are well fitted by a power law with extra-absorption at z = 0.524; the energy index in the 0.2-10 keV range is well constrained: a = 0.645 ± 0.028 and the 1 keV flux density is 0.311 ± 0.008 μJy. The analysis of the X-ray light curves reveals that no significant variations occurred during the pointing. In contrast, simultaneous dense radio monitoring with the 100 m telescope at Effelsberg shows a ∼2-3% flux decrease in 6-7 h, which, if intrinsic, would imply a brightness temperature well above the Compton limit and hence a lower limit to the Doppler factor 6 > 46.


Astronomy and Astrophysics | 2010

Another look at the BL Lacertae flux and spectral variability - Observations by GASP-WEBT, XMM-Newton, and Swift in 2008–2009

C. M. Raiteri; M. Villata; L. Bruschini; Alessandro Capetti; O. M. Kurtanidze; V. M. Larionov; Patrizia Romano; S. Vercellone; I. Agudo; Hugh D. Aller; Margo F. Aller; A. A. Arkharov; U. Bach; A. Berdyugin; D. A. Blinov; M. Böttcher; C. S. Buemi; P. Calcidese; D. Carosati; R. Casas; W. P. Chen; J. M. Coloma; C. Diltz; A. Di Paola; M. Dolci; N. V. Efimova; E. Forné; J. L. Gómez; M. A. Gurwell; A. Hakola

Aims. In a previous study we suggested that the broad-band emission and variability properties of BL Lacertae can be accounted for by a double synchrotron emission component with related inverse-Compton emission from the jet, plus thermal radiation from the accretion disc. Here we investigate the matter with further data extending over a wider energy range. Methods. The GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT) monitored BL Lacertae in 2008‐2009 at radio, near-IR, and optical frequencies to follow its flux behaviour. During this period, high-energy observations were performed by XMMNewton, Swift, and Fermi. We analyse these data with particular attention to the calibration of Swift UV data, and apply a helical jet model to interpret the source broad-band variability. Results. The GASP-WEBT observations show an optical flare in 2008 February‐March, and oscillations of several tenths of mag on a few-day time scale afterwards. The radio flux is only mildly variable . The UV data from both XMM-Newton and Swift seem to confirm a UV excess that is likely caused by thermal emission from the accretion disc. The X-ray data from XMM-Newton indicate a strongly concave spectrum, as well as moderate (�4‐7%) flux variability on an hour time scale. The Swift X-ray d ata reveal fast (interday) flux changes, not correlated with those observed at lower energies. We compare the spectral energy distribution (SED) corresponding to the 2008 low-brightness state, which was characterised by a synchrotron dominance, to the 1997 outburst state, where the inverse-Compton emission was prevailing. A fit with an inhomogeneous helical jet model suggests that two synchrotron components are at work with their self inverse-Compton emission. Most likely, they represent the radiation from two distinct emitting reg ions in the jet. We show that the difference between the source SEDs in 2008 and 1997 can be explained in terms of pure geometrical variations. The outburst state occurred when the jet-emitting regions were better aligned with the line of sight, producing an increase of the Doppler beaming factor. Conclusions. Our analysis demonstrates that the jet geometry can play an extremely important role in the BL Lacertae flux and spectral v ariability. Indeed, the emitting jet is probably a bent and dynamic structure, and hence changes in the emitting regions viewing angles are likely to happen, with strong consequences on the source multiwavelength behaviour.


Astronomy and Astrophysics | 2009

The correlated optical and radio variability of BL Lacertae. WEBT data analysis 1994-2005

M. Villata; C. M. Raiteri; V. M. Larionov; M. G. Nikolashvili; M. F. Aller; U. Bach; D. Carosati; Filip Hroch; M. A. Ibrahimov; S. G. Jorstad; Y. Y. Kovalev; A. Lähteenmäki; K. Nilsson; H. Teräsranta; G. Tosti; Hugh D. Aller; A. A. Arkharov; A. Berdyugin; Paul Boltwood; C. S. Buemi; R. Casas; P. Charlot; J. M. Coloma; A. Di Paola; G. Di Rico; G. N. Kimeridze; T. S. Konstantinova; E. N. Kopatskaya; Yu. A. Kovalev; Omar M. Kurtanidze

Context: Since 1997, BL Lacertae has undergone a phase of high optical activity, with the occurrence of several prominent outbursts. Starting from 1999, the Whole Earth Blazar Telescope (WEBT) consortium has organized various multifrequency campaigns on this blazar, collecting tens of thousands of data points. One of the main issues in the study of this huge dataset has been the search for correlations between the optical and radio flux variations, and for possible periodicities in the light curves. The analysis of the data assembled during the first four campaigns (comprising also archival data to cover the period 1968-2003) revealed a fair optical-radio correlation in 1994-2003, with a delay of the hard radio events of ~100 days. Moreover, various statistical methods suggested the existence of a radio periodicity of ~8 years. Aims: In 2004 the WEBT started a new campaign to extend the dataset to the most recent observing seasons, in order to possibly confirm and better understand the previous results. Methods: In this campaign we have collected and assembled about 11 000 new optical observations from twenty telescopes, plus near-IR and radio data at various frequencies. Here, we perform a correlation analysis on the long-term R-band and radio light curves. Results: In general, we confirm the ~100-day delay of the hard radio events with respect to the optical ones, even if longer (~200-300 days) time lags are also found in particular periods. The radio quasi-periodicity is confirmed too, but the “period” seems to progressively lengthen from 7.4 to 9.3 years in the last three cycles. The optical and radio behaviour in the last forty years suggests a scenario where geometric effects play a major role. In particular, the alternation of enhanced and suppressed optical activity (accompanied by hard and soft radio events, respectively) can be explained in terms of an emitting plasma flowing along a rotating helical path in a curved jet. The radio-to-optical data presented in this paper are stored in the WEBT archive; for questions regarding their availability, please contact the WEBT President Massimo Villata.

Collaboration


Dive into the E. Lindfors's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

V. M. Larionov

Saint Petersburg State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge