E. M. Corsini
University of Padua
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. M. Corsini.
Monthly Notices of the Royal Astronomical Society | 2007
Jens Thomas; R. P. Saglia; Ralf Bender; Daniel Thomas; Karl Gebhardt; John Magorrian; E. M. Corsini; Gary Wegner
Dynamical models for 17 early-type galaxies in the Coma cluster are presented. The galaxy sample consists of flattened, rotating as well as non-rotating early-types including cD and S0 galaxies with luminosities between MB = 18.79 and MB = 22.56. Kinematical long-slit observations cover at least the major and minor axis and extend to 1 4 reff. Axisymmetric Schwarzschild models are used to derive stellar mass-tolight ratios and dark halo parameters. In every galaxy the best fit with dark matter matches the data better than the best fit without. The statistical significance is over 95 percent for 8 galaxies, around 90 percent for 5 galaxies and for four galaxies it is not significant. For the highly significant cases systematic deviations between observed and modelled kinematics are clearly seen; for the remaining galaxies differences are more statistical in nature. Best-fit models contain 10-50 percent dark matter inside the half-light radius. The central dark matter density is at least one order of magnitude lower than the luminous mass density, independent of the assumed dark matter density profile. The central phase-space density of dark matter is often orders of magnitude lower than in the luminous component, especially when the halo core radius is large. The orbital system of the stars along the major-axis is slightly dominated by radial motions. Some galaxies show tangential anisotropy along the minor-axis, which is correlated with the minor-axis Gauss-Hermite coefficientH4. Changing the balance between data-fit and regularisation constraints does not change the reconstructed mass structure significantly: model anisotropies tend to strengthen if the weight on regularisation is reduced, but the general property of a galaxy to be radially or tangentially anisotropic, respectively, does not change. This paper is aimed to set the basis for a subsequent detailed analysis of luminous and dark matter scaling relations, orbital dynamics and stellar populations.
Astronomy and Astrophysics | 2009
J. A. L. Aguerri; J. Méndez-Abreu; E. M. Corsini
Context. Bars are very common in the centre of the disc galaxies, and they drive the evolution of their structure. The state-of-the-art imaging and redshift surveys of galaxies allow us to study the relationships between the properties of the bars and those of their hosts in statistically significant samples. Aims. A volume-limited sample of 2106 disc galaxies was studied to derive the bar fraction, length, and strength as a function of the morphology, size, local galaxy density, light concentration, and colour of the host galaxy. The sample galaxies were selected to not be strongly disturbed/interacting. Methods. The bar and galaxy properties were obtained by analysing the r-band images of the sample galaxies available in the Sloan Digital Sky Survey Data Release 5. Results. The bars were detected using the ellipse fitting method and Fourier analysis method. They were tested and calibrated with extensive simulations on artificial images. The ellipse fitting method was found to be more efficient in detecting bars in spiral galaxies. The fraction of barred galaxies turned out to be 45%. A bar was found in 29% of the lenticular galaxies, in 55% and 54% of the earlyand late-type spirals, respectively. The bar length (normalised by the galaxy size) of late-type spirals is shorter than in early-type or lenticular ones. A correlation between the bar length and galaxy size was found with longer bars hosted by larger galaxies. The bars of the lenticular galaxies are weaker than those in spirals. Moreover, the unimodal distribution of the bar strength found for all the galaxy types argues against a quick transition between the barred and unbarred statues. There is no difference between the local galaxy density of barred and unbarred galaxies. Besides, neither the length nor strength of the bars are correlated with the local density of the galaxy neighbourhoods. In contrast, a statistical significant difference between the central light concentration and colour of barred and unbarred galaxies was found. Bars are mostly located in less concentrated and bluer galaxies. Conclusions. These results indicate that the properties of bars are strongly related to those of their host galaxies, but do not depend on the local environment.
Astronomy and Astrophysics | 2008
J. Méndez-Abreu; J. A. L. Aguerri; E. M. Corsini; E. Simonneau
The structural parameters of a magnitude-limited sample of 148 unbarred S0-Sb galaxies were derived to study the correlations between bulge and disk parameters as well as the probability distribution function (PDF) of the intrinsic equatorial ellipticity of bulges. A new algorithm (GASP2D) was used to perform the bidimensional bulge-disk decomposition of the J-band galaxy images extracted from the archive of the 2MASS survey. The PDF of intrinsic ellipticities was derived from the distribution of the observed ellipticities of the bulges and misalignments between the the bulges and disks. About 80% of the observed bulges are not oblate but triaxial ellipsoids. Their mean axial ratio in the equatorial plane is =0.85. There is not significant dependence of their PDF on morphology, light concentration or luminosity. This has to be explained by the different scenarios of bulge formation.
Monthly Notices of the Royal Astronomical Society | 2011
Jens Thomas; R. P. Saglia; Ralf Bender; Daniel Thomas; Karl Gebhardt; John Magorrian; E. M. Corsini; Gary Wegner; S. Seitz
This work aims to study the distribution of luminous and dark matter in Coma early-type galaxies. Dynamical masses obtained under the assumption that mass follows light do not match with the masses of strong gravitational lens systems of similar velocity dispersions. Instead, dynamical fits with dark matter halos are in good agreement with lensing results. We derive mass-to-light ratios of the stellar populations from Lick absorption line indices, reproducing well the observed galaxy colours. Even in dynamical models with dark matter halos the amount of mass that follows the light increases more rapidly with galaxy velocity dispersion than expected for a constant stellar initial mass function (IMF). While galaxies around sigma ~ 200 km/s are consistent with a Kroupa IMF, the same IMF underpredicts luminous dynamical masses of galaxies with sigma ~ 300 km/s by a factor of two and more. A systematic variation of the stellar IMF with galaxy velocity dispersion could explain this trend with a Salpeter IMF for the most massive galaxies. If the IMF is instead constant, then some of the dark matter in high velocity dispersion galaxies must follow a spatial distribution very similar to that of the light. A combination of both, a varying IMF and a component of dark matter that follows the light is possible as well. For a subsample of galaxies with old stellar populations we show that the tilt in the fundamental plane can be explained by systematic variations of the total (stellar + dark) mass inside the effective radius. We tested commonly used mass estimator formulae, finding them accurate at the 20-30% level.
The Astrophysical Journal | 2009
Jens Thomas; R. P. Saglia; Ralf Bender; Daniel Thomas; Karl Gebhardt; John Magorrian; E. M. Corsini; Gary Wegner
Axisymmetric, orbit-based dynamical models are used to derive dark matter scaling relations for Coma early-type galaxies. From faint to bright galaxies, halo core radii and asymptotic circular velocities increase. Compared to spirals of the same brightness, the majority of Coma early-type galaxies?those with old stellar populations?have similar halo core radii but more than two times larger asymptotic halo velocities. The average dark matter density inside 2 r eff decreases with increasing luminosity and is 6.8 times larger than in disk galaxies of the same B-band luminosity. Compared at the same stellar mass, dark matter densities in ellipticals are 13.5 times higher than in spirals. Different baryon concentrations in ellipticals and spirals cannot explain the higher dark matter density in ellipticals. Instead, the assembly redshift (1 + z) of Coma early-type halos is likely about two times larger than of comparably bright spirals. Assuming that local spirals typically assemble at a redshift of one, the majority of bright Coma early-type galaxy halos must have formed around z 2-3. For about half of our Coma galaxies, the assembly redshifts match with constraints derived from stellar populations. We find dark matter densities and estimated assembly redshifts of our observed Coma galaxies in reasonable agreement with recent semi-analytic galaxy formation models.
The Astrophysical Journal | 2009
A. Beifiori; Marc Sarzi; E. M. Corsini; E. Dalla Bontà; A. Pizzella; L. Coccato; F. Bertola
A method for the preparation of 1,3-diketones is disclosed wherein the method comprises the steps of:(A) mixing an alkali metal base with a hindered alcohol in an aromatic hydrocarbon solvent;(B) boiling the mixture and azeotropically distilling water formed by the reaction between the base and the alcohol, whereby a solution of a hindered alkali metal alkoxide is formed in situ in the solvent;(C) mixing an ester with the solution of the hindered alkali metal alkoxide in the aromatic hydrocarbon solvent; and then(D) adding a ketone to the mixture.
Monthly Notices of the Royal Astronomical Society | 2008
L. Morelli; E. Pompei; A. Pizzella; J. Méndez-Abreu; E. M. Corsini; L. Coccato; R. P. Saglia; Marc Sarzi; F. Bertola
Photometry and long-slit spectroscopy are presented for 14 S0 and spiral galaxies of the Fornax, Eridanus and Pegasus cluster, and NGC 7582 group. The structural parameters of the galaxies are derived from the R-band images by performing a two-dimensional photometric decomposition of the surface brightness distribution. This is assumed to be the sum of the contribution of a bulge and disc component characterized by elliptical and concentric isophotes with constant (but possibly different) ellipticity and position angles. The rotation curves and velocity dispersion profiles are measured from the spectra obtained along the major axis of galaxies. The radial profiles of the Hβ, Mg and Fe line-strength indices are presented too. Correlations between the central values of Mg2, � Fe� ,H β and σ are found. The age, metallicity and α/Fe enhancement of the stellar population in the centre and at the radius where bulge and disc give the same contribution to the total surface brightness are obtained using stellar population models with variable element abundance ratios. Three classes of bulges are identified. The youngest bulges (∼2 Gyr) with ongoing star formation, intermediate-age bulges (4–8 Gyr) have solar metallicity, and old bulges (∼10 Gyr) have high metallicity. Most of the sample bulges display solar α/Fe enhancement, no gradient in age and a negative gradient of metallicity. The presence of negative gradient in the metallicity radial profile favours a scenario with bulge formation via dissipative collapse. This implies strong insideout formation that should give rise to a negative gradient in the α/Fe enhancement too. But, no gradient is measured in the [α/Fe] radial profiles for all the galaxies, except for NGC 1366. In this galaxy there is a kinematically decoupled component, which is younger than the rest of host bulge. It possibly formed by enriched material probably acquired via interaction or minor merging. The bulge of NGC 1292 is the most reliable pseudo-bulge of our sample. The properties of its stellar population are consistent with a slow build-up within a scenario of secular evolution.
Monthly Notices of the Royal Astronomical Society | 2014
S. Spiro; Andrea Pastorello; M. L. Pumo; Luca Zampieri; M. Turatto; S. J. Smartt; Stefano Benetti; Enrico Cappellaro; S. Valenti; I. Agnoletto; G. Altavilla; T. Aoki; E. Brocato; E. M. Corsini; A. Di Cianno; N. Elias-Rosa; Mario Hamuy; K. Enya; M. Fiaschi; Gaston Folatelli; S. Desidera; A. Harutyunyan; D. A. Howell; A. Kawka; Y. Kobayashi; Bruno Leibundgut; Takeo Minezaki; H. Navasardyan; K. Nomoto; Seppo Mattila
We present new data for five underluminous Type II-plateau supernovae (SNe IIP), namely SN 1999gn, SN 2002gd, SN 2003Z, SN 2004eg and SN 2006ov. This new sample of low-luminosity SNe IIP (LL SNe II ...
The Astrophysical Journal | 2009
E. Dalla Bontà; Laura Ferrarese; E. M. Corsini; Jordi Miralda-Escudé; L. Coccato; Marc Sarzi; A. Pizzella; A. Beifiori
We present Hubble Space Telescope imaging and spectroscopic observations of three Brightest Cluster Galaxies, Abell 1836-BCG, Abell 2052-BCG, and Abell 3565-BCG, obtained with the Wide Field and Planetary Camera 2, the Advanced Camera for Surveys and the Space Telescope Imaging Spectrograph. The data provide detailed information on the structure and mass profile of the stellar component, the dust optical depth, and the spatial distribution and kinematics of the ionized gas within the innermost region of each galaxy. Dynamical models, which account for the observed stellar mass profile and include the contribution of a central supermassive black hole (SBH), are constructed to reproduce the kinematics derived from the H? and [N II]??6548,6583 emission lines. Secure SBH detection with M ? = 3.61+0.41 ?0.50 ? 109 M ? and M ? = 1.34+0.21 ?0.19 ? 109 M ?, respectively, are obtained for Abell 1836-BCG and Abell 3565-BCG, which show regular rotation curves and strong central velocity gradients. In the case of Abell 2052-BCG, the lack of an orderly rotational motion prevents a secure determination, although an upper limit of M ? 4.60 ? 109 M ? can be placed on the mass of the central SBH. These measurements represent an important step forward in the characterization of the high-mass end of the SBH mass function.
Astronomy and Astrophysics | 2005
J. A. L. Aguerri; N. Elias-Rosa; E. M. Corsini; Casiana Munoz-Tunon
We have derived the photometric parameters for the structural components of a sample of fourteen SB0 galaxies by applying a parametric photometric decomposition to their observed I-band surface brightness distribution. We find that SB0 bulges are similar to bulges of the early-type unbarred spirals, i.e. they have nearly exponential surface brightness profiles (� n� = 1.48 ± 0.16) and their effective radii are strongly coupled to the scale lengths of their surrounding discs (� re/h� = 0.20 ± 0.01). The photometric analysis alone does not allow us to differentiate SB0 bulges from unbarred S0 ones. However, three sample bulges have disc properties typical of pseudobulges. The bulges of NGC 1308 and NGC 4340 rotate faster than bulges of unbarred galaxies and models of isotropic oblate spheroids with equal ellipticity. The bulge of IC 874 has a velocity dispersion lower than expected from the Faber-Jackson correlation and the fundamental plane of the elliptical galaxies and S0 bulges. The remaining sample bulges are classical bulges, and are kinematically similar to lower-luminosity ellipticals. In particular, they follow the Faber-Jackson correlation, lie on the fundamental plane and those for which stellar kinematics are available rotate as fast as the bulges of unbarred galaxies.