Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. M. Tanvir is active.

Publication


Featured researches published by E. M. Tanvir.


BioMed Research International | 2015

Amelioration of Isoproterenol-Induced Oxidative Damage in Rat Myocardium by Withania somnifera Leaf Extract

Md. Ibrahim Khalil; Istiyak Ahmmed; Romana Ahmed; E. M. Tanvir; Rizwana Afroz; Sudip Paul; Siew Hua Gan; Nadia Alam

We investigated the protective role of Withania somnifera leaf extract (WSLEt) on isoproterenol- (ISO-) induced myocardial infarction (MI) in rats. Subcutaneous injection of ISO (85 mg/kg body weight (b.w.)) administered to rats for two consecutive days caused a significant increase in cardiac troponin I (cTnI) levels and serum lipid profiles, as well as the activities of some marker enzymes. In addition to these diagnostic markers, there were increased levels of lipid peroxidation (LPO) and decreased activities of enzymatic antioxidants (superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRx), and glutathione-S-transferase (GST)) in the myocardium. However, oral pretreatment (100 mg/kg b.w.) with WSLEt for 4 weeks elicited a significant cardioprotective activity by lowering the levels of cTnI, lipid profiles, and marker enzymes. The levels of LPO products were also significantly decreased. Elevated activities of antioxidant enzymes were also observed in rats pretreated with WSLEt. As further confirmed histopathologically, our findings strongly suggest that the cardioprotective effect of WSLEt on myocardium experiencing ISO-induced oxidative damage may be due to an augmentation of the endogenous antioxidant system and an inhibition of LPO in the myocardial membrane. We conclude that WSLEt confers some protection against oxidative damage in ISO-induced MI in rats.


BioMed Research International | 2015

Cardioprotective Effects of Tualang Honey: Amelioration of Cholesterol and Cardiac Enzymes Levels

Md. Ibrahim Khalil; E. M. Tanvir; Rizwana Afroz; Siti Amrah Sulaiman; Siew Hua Gan

The present study was designed to investigate the cardioprotective effects of Malaysian Tualang honey against isoproterenol- (ISO-) induced myocardial infarction (MI) in rats by investigating changes in the levels of cardiac marker enzymes, cardiac troponin I (cTnI), triglycerides (TG), total cholesterol (TC), lipid peroxidation (LPO) products, and antioxidant defense system combined with histopathological examination. Male albino Wistar rats (n = 40) were pretreated orally with Tualang honey (3 g/kg/day) for 45 days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes (creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and aspartate transaminase (AST)), cTnI, serum TC, and TG levels. In addition, ISO-induced myocardial injury was confirmed by a significant increase in heart lipid peroxidation (LPO) products (TBARS) and a significant decrease in antioxidant enzymes (SOD, GPx, GRx, and GST). Pretreatment of ischemic rats with Tualang honey conferred significant protective effects on all of the investigated biochemical parameters. The biochemical findings were further confirmed by histopathological examination in both Tualang-honey-pretreated and ISO-treated hearts. The present study demonstrates that Tualang honey confers cardioprotective effects on ISO-induced oxidative stress by contributing to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.


Evidence-based Complementary and Alternative Medicine | 2014

Protective Effect of Sundarban Honey against Acetaminophen-Induced Acute Hepatonephrotoxicity in Rats

Rizwana Afroz; E. M. Tanvir; Md. Fuad Hossain; Siew Hua Gan; Mashud Parvez; Md. Aminul Islam; Md. Ibrahim Khalil

Honey, a supersaturated natural product of honey bees, contains complex compounds with antioxidant properties and therefore has a wide a range of applications in both traditional and modern medicine. In the present study, the protective effects of Sundarban honey from Bangladesh against acetaminophen- (APAP-) induced hepatotoxicity and nephrotoxicity in experimental rats were investigated. Adult male Wistar rats were pretreated with honey (5 g/kg) for 4 weeks, followed by the induction of hepatotoxicity and nephrotoxicity via the oral administration of a single dose of APAP (2 g/kg). Organ damage was confirmed by measuring the elevation of serum alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST), total protein (TP), total bilirubin (TB), urea, creatinine, and malondialdehyde (MDA). Histopathological alterations observed in the livers and the kidneys further confirmed oxidative damage to these tissues. Animals pretreated with Sundarban honey showed significantly markedly reduced levels of all of the investigated parameters. In addition, Sundarban honey ameliorated the altered hepatic and renal morphology in APAP-treated rats. Overall, our findings indicate that Sundarban honey protects against APAP-induced acute hepatic and renal damage, which could be attributed to the honeys antioxidant properties.


Evidence-based Complementary and Alternative Medicine | 2016

Satkara (Citrus macroptera) Fruit Protects against Acetaminophen-Induced Hepatorenal Toxicity in Rats

Sudip Paul; Md. Aminul Islam; E. M. Tanvir; Romana Ahmed; Sagarika Das; Nur-E-Noushin Rumpa; Md. Sakib Hossen; Mashud Parvez; Siew Hua Gan; Md. Ibrahim Khalil

Although Citrus macroptera (Rutaceae), an indigenous fruit in Bangladesh, has long been used in folk medicine, however, there is a lack of information concerning its protective effects against oxidative damage. The protective effects of an ethanol extract of Citrus macroptera (EECM) against acetaminophen-induced hepatotoxicity and nephrotoxicity were investigated in rats. Rats (treatment groups) were pretreated with EECM at doses of 250, 500, and 1000 mg/kg, respectively, orally for 30 days followed by acetaminophen administration. Silymarin (100 mg/kg) was administered as a standard drug over a similar treatment period. Our findings indicated that oral administration of acetaminophen induced severe hepatic and renal injuries associated with oxidative stress, as observed by 2-fold higher lipid peroxidation (TBARS) compared to control. Pretreatment with EECM prior to acetaminophen administration significantly improved all investigated biochemical parameters, that is, transaminase activities, alkaline phosphatase, lactate dehydrogenase, γ-glutamyl transferase activities and total bilirubin, total cholesterol, triglyceride and creatinine, urea, uric acid, sodium, potassium and chloride ions, and TBARS levels. These findings were confirmed by histopathological examinations. The improvement was prominent in the group that received 1000 mg/kg EECM. These findings suggested that C. macroptera fruit could protect against acetaminophen-induced hepatonephrotoxicity, which might be via the inhibition of lipid peroxidation.


Human & Experimental Toxicology | 2016

A model of chlorpyrifos distribution and its biochemical effects on the liver and kidneys of rats.

E. M. Tanvir; Rizwana Afroz; Maz Chowdhury; Siew Hua Gan; Nurul Karim; Md. Nazmul Islam; Md. Ibrahim Khalil

This study investigated the main target sites of chlorpyrifos (CPF), its effect on biochemical indices, and the pathological changes observed in rat liver and kidney function using gas chromatography/mass spectrometry. Adult female Wistar rats (n = 12) were randomly assigned into two groups (one control and one test group; n = 6 each). The test group received CPF via oral gavage for 21 days at 5 mg/kg daily. The distribution of CPF was determined in various organs (liver, brain, heart, lung, kidney, ovary, adipose tissue, and skeletal muscle), urine and stool samples using GCMS. Approximately 6.18% of CPF was distributed in the body tissues, and the highest CPF concentration (3.80%) was found in adipose tissue. CPF also accumulated in the liver (0.29%), brain (0.22%), kidney (0.10%), and ovary (0.03%). Approximately 83.60% of CPF was detected in the urine. CPF exposure resulted in a significant increase in plasma transaminases, alkaline phosphatase, and total bilirubin levels, a significant reduction in total protein levels and an altered lipid profile. Oxidative stress due to CPF administration was also evidenced by a significant increase in liver malondialdehyde levels. The detrimental effects of CPF on kidney function consisted of a significant increase in plasma urea and creatinine levels. Liver and kidney histology confirmed the observed biochemical changes. In conclusion, CPF bioaccumulates over time and exerts toxic effects on animals.


Journal of Food Quality | 2017

Antioxidant Properties of Popular Turmeric (Curcuma longa) Varieties from Bangladesh

E. M. Tanvir; Md. Sakib Hossen; Md. Fuad Hossain; Rizwana Afroz; Siew Hua Gan; Md. Ibrahim Khalil; Nurul Karim

We investigated the aqueous and ethanolic extracts of different forms (local names: mura and chora) of turmeric (Curcuma longa) from the Khulna and Chittagong divisions of Bangladesh for their antioxidant properties and polyphenol, flavonoid, tannin, and ascorbic acid contents. The antioxidant activity was determined using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. The ethanolic extract of Chittagong’s mura contained the highest concentrations of polyphenols (16.07%), flavonoids (9.66%), and ascorbic acid (0.09 mg/100 g) and chora resulted in high yields (17.39%). The ethanolic extract of Khulna’s mura showed a higher DPPH radical-scavenging activity with the lowest 50% inhibitory concentration (IC50) (1.08 μg/mL), while Khulna’s chora had the highest FRAP value (  μM Fe per 100 g). Overall, the ethanolic extract had higher antioxidant properties than those in the aqueous extract. However, the tannin concentration was lower in the ethanolic extract. We conclude that the turmeric varieties investigated in this study are useful sources of natural antioxidants, which confer significant protection against free radical damage.


BioMed Research International | 2016

Sundarban Honey Confers Protection against Isoproterenol-Induced Myocardial Infarction in Wistar Rats

Rizwana Afroz; E. M. Tanvir; Nurul Karim; Md. Sabir Hossain; Nadia Alam; Siew Hua Gan; Md. Ibrahim Khalil

The present study was designed to investigate the cardioprotective effects of Sundarban honey (SH) in rats with isoproterenol- (ISO-) induced myocardial infarction. Adult male Wistar Albino rats were pretreated with Sundarban honey (5 g/kg) daily for a period of 6 weeks. After the treatment period, ISO (85 mg/kg) was subcutaneously injected into the rats at 24 h intervals for 2 days. ISO-induced myocardial damage was indicated by increased serum cardiac specific troponin I levels and cardiac marker enzyme activities including creatine kinase-MB, lactate dehydrogenase, aspartate transaminase, and alanine transaminase. Significant increases in serum total cholesterol, triglycerides, and low-density lipoprotein-cholesterol levels were also observed, along with a reduction in the serum high-density lipoprotein-cholesterol level. In addition to these diagnostic markers, the levels of lipid peroxide products were significantly increased. The activities of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase, and glutathione reductase were significantly decreased in the hearts after ISO-induced myocardial infarction. However, pretreatment of ischemic rats with Sundarban honey brought the biochemical parameters to near normalcy, indicating the protective effect of Sundarban honey against ISO-induced ischemia in rats. Histopathological findings of the heart tissues further confirmed the biochemical findings, indicating that Sundarban honey confers protection against ISO-induced oxidative stress in the myocardium.


Evidence-based Complementary and Alternative Medicine | 2017

Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats

Romana Ahmed; E. M. Tanvir; Md. Sakib Hossen; Rizwana Afroz; Istiyak Ahmmed; Nur-E-Noushin Rumpa; Sudip Paul; Siew Hua Gan; Siti Amrah Sulaiman; Md. Ibrahim Khalil

Propolis contains high concentrations of polyphenols, flavonoids, tannins, ascorbic acid, and reducing sugars and proteins. Malaysian Propolis (MP) has been reported to exhibit high 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity and ferric reducing antioxidant power (FRAP) values. Herein, we report the antioxidant properties and cardioprotective properties of MP in isoproterenol- (ISO-) induced myocardial infarction in rats. Male Wistar rats (n = 32) were pretreated orally with an ethanol extract of MP (100 mg/kg/day) for 30 consecutive days. Subcutaneous injection of ISO (85 mg/kg in saline) for two consecutive days caused a significant increase in serum cardiac marker enzymes and cardiac troponin I levels and altered serum lipid profiles. In addition significantly increased lipid peroxides and decreased activities of cellular antioxidant defense enzymes were observed in the myocardium. However, pretreatment of ischemic rats with MP ameliorated the biochemical parameters, indicating the protective effect of MP against ISO-induced ischemia in rats. Histopathological findings obtained for the myocardium further confirmed the biochemical findings. It is concluded that MP exhibits cardioprotective activity against ISO-induced oxidative stress through its direct cytotoxic radical-scavenging activities. It is also plausible that MP contributed to endogenous antioxidant enzyme activity via inhibition of lipid peroxidation.


Journal of Chemistry | 2017

Minerals, Toxic Heavy Metals, and Antioxidant Properties of Honeys from Bangladesh

Sudip Paul; Md. Sakib Hossen; E. M. Tanvir; Rizwana Afroz; Delwar Hossen; Sagarika Das; Nikhil Chandra Bhoumik; Nurul Karim; Farha Matin Juliana; Siew Hua Gan; Md. Ibrahim Khalil

The study reports on major and trace elements as well as antioxidant properties of honey samples from Bangladesh. Four major cationic elements, seven trace elements, and three heavy metals were determined in the 12 honey samples using atomic absorption spectrophotometer. Nutritional values in these honey samples were further investigated according to their antioxidant properties. The content of major elements was in the range of 62.75–616.58, 579.48–2219.43, 69.42–632.25, and 0.13–1.20 mg/kg for sodium, potassium, magnesium, and calcium, respectively. The trace elements varied in the range of 0.41–28, 0.12–3.54, 1.54–2.85, 0.29–0.59, 0.02–0.35, and 0.01–0.06 mg/kg for iron, zinc, copper, nickel, cobalt, and cadmium, respectively. Among the heavy metals, only lead (0.17–2.19 mg/kg) was detected. The results of antioxidant analysis based on phenolics, flavonoids, ascorbic acid, reducing sugar, and proteins (as nonphenolic antioxidants) revealed that multifloral raw honey samples contain significantly higher levels of reducing agents than monofloral and commercial brand honeys. The study provides a useful insight on the minerals, heavy metals, and antioxidant properties of honey samples commonly consumed in Bangladesh and found to be rich source of antioxidants and minerals. Some samples might pose some risk to the health due to lead contamination.


Pharmaceutical Biology | 2017

Protective mechanism of turmeric (Curcuma longa) on carbofuran-induced hematological and hepatic toxicities in a rat model

Md. Sakib Hossen; E. M. Tanvir; Maruf Billah Prince; Sudip Paul; Moumoni Saha; Md. Yousuf Ali; Siew Hua Gan; Md. Ibrahim Khalil; Nurul Karim

Abstract Context: Turmeric (Curcuma longa L. [Zingiberaceae]) is used in the treatment of a variety of conditions including pesticide-induced toxicity. Objective: The study reports the antioxidant properties and the protective effects of turmeric against carbofuran (CF)-induced toxicity in rats. Materials and methods: The antioxidant potential was determined by using free radicals scavenging activity and ferric reducing antioxidant power values. Male Wistar rats were randomly divided into four groups, designated as control, turmeric (100 mg/kg/day), CF (1 mg/kg/day) and turmeric (100 mg/kg/day) + CF (1 mg/kg/day) treatments. All of the doses were administered orally for 28 consecutive days. The biological activity of the turmeric and CF was determined by using several standard biochemical methods. Results: Turmeric contains high concentrations of polyphenols (8.97 ± 0.15 g GAEs), flavonoids (5.46 ± 0.29 g CEs), ascorbic acid (0.06 ± 0.00 mg AEs) and FRAP value (1972.66 ± 104.78 μM Fe2+) per 100 g of sample. Oral administration of CF caused significant changes in some of the blood indices, such as, mean corpuscular volume, corpuscular hemoglobin, white blood cell, platelet distribution width and induced severe hepatic injuries associated with oxidative stress, as observed by the significantly higher lipid peroxidation (LPO) levels when compared to control, while the activities of cellular antioxidant enzymes (including superoxide dismutase and glutathione peroxidase) were significantly suppressed in the liver tissue. Discussion and conclusion: Turmeric supplementation could protect against CF-induced hematological perturbations and hepatic injuries in rats, plausibly by the up-regulation of antioxidant enzymes and inhibition of LPO to confer the protective effect.

Collaboration


Dive into the E. M. Tanvir's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Siew Hua Gan

Universiti Sains Malaysia

View shared research outputs
Top Co-Authors

Avatar

Rizwana Afroz

Jahangirnagar University

View shared research outputs
Top Co-Authors

Avatar

Sudip Paul

Jahangirnagar University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nurul Karim

Jahangirnagar University

View shared research outputs
Top Co-Authors

Avatar

Moumoni Saha

Jahangirnagar University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge