Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Méroc is active.

Publication


Featured researches published by E. Méroc.


Preventive Veterinary Medicine | 2008

Field observations during the bluetongue serotype 8 epidemic in 2006: I. Detection of first outbreaks and clinical signs in sheep and cattle in Belgium, France and the Netherlands

A.R.W. Elbers; A. Backx; E. Méroc; Guillaume Gerbier; Christoph Staubach; Guy Hendrickx; Arco van der Spek; Koen Mintiens

Starting August 2006, a major epidemic of bluetongue (BT) was identified in North-West Europe, affecting The Netherlands, Belgium, Germany, Luxembourg and the North of France. It was caused by BT virus serotype 8 (BTV-8), a serotype previously unknown to the European Union (EU). In this outbreak, the virus caused clinical disease in a few individual animals within cattle herds, whereas overt clinical disease was usually restricted to sheep. Investigations in Belgium suggested that the first clinical signs of BTV-8 appeared mid July 2006 in a cattle herd, while the first suspicion of a BT-outbreak in Belgium was reported on 17 August 2006. In the first 10 BTV-8 outbreaks in the Netherlands, the owners indicated that the first clinical signs started approximately 12-17 days before a suspicion was reported to the veterinary authorities via a veterinary practitioner. In BTV-8 affected sheep flocks, erosions of the oral mucosa, fever, salivation, facial and mandibular oedema, apathy and tiredness, mortality, oedema of the lips, lameness, and dysphagia were among the most frequent clinical signs recorded. The most prominent clinical signs in BTV-8 affected cattle herds were: crusts/lesions of the nasal mucosa, erosions of lips/crusts in or around the nostrils, erosions of the oral mucosa, salivation, fever, conjunctivitis, coronitis, muscle necrosis, and stiffness of the limbs. Crusts/lesions of nasal mucosa, conjunctivitis, hyperaemic/purple coloration and lesions of the teats, and redness/hypersensitivity of the skin were relatively more seen on outbreak farms with cattle compared to sheep. Mortality, oedema of the head and ears, coronitis, redness of the oral mucosa, erosions/ulceration of tongue mucosa, purple coloration of the tongue and tongue protrusion and dyspneu were relatively more seen on outbreak farms with sheep compared to cattle.


Transboundary and Emerging Diseases | 2008

Transplacental infection and apparently immunotolerance induced by a wild-type bluetongue virus serotype 8 natural infection.

K. De Clercq; I. De Leeuw; Bart Verheyden; E. Vandemeulebroucke; T. Vanbinst; C. Herr; E. Méroc; G. Bertels; N. Steurbaut; C. Miry; K. De Bleecker; G. Maquet; J. Bughin; M. Saulmont; M. Lebrun; B. Sustronck; R. De Deken; J. Hooyberghs; P. Houdart; M. Raemaekers; Koen Mintiens; P Kerkhofs; Nesya Goris; Frank Vandenbussche

Until recently, bluetongue (BT) virus (BTV) serotypes reportedly causing transplacental infections were all ascribed to the use of modified live virus strains. During the 2007 BT epidemic in Belgium, a significant increase in the incidence of abortions was reported. A study including 1348 foetuses, newborns and young animals with or without suspicion of BTV infection, was conducted to investigate the occurrence of natural transplacental infection caused by wild-type BTV-8 and to check the immunocompetence of newborns. BTV RNA was present in 41% and 18.5% of aborted foetuses from dams with or without suspected BTV involvement during pregnancy, respectively. The results of dam/calf pairs sampled before colostrum uptake provide evidence of almost 10% transplacental BTV infection in newborns. Apparently immunotolerant calves were found at a level of 2.4%. The current study concludes that the combined serological and real-time PCR (RT-qPCR) result of pregnant dams gives no indication of the infection status of the offspring except in the case of a double negative result. In a group of 109 calves with clinical suspicion of BT, born during the vector-free period, 11% were found to be RT-qPCR positive. The true prevalence was estimated to be 2.3%, indicating the extent of transplacental infection in a group of 733 calves of one to 4 months of age without BT suspicion. Moreover, virus isolation was successful for two newborn calves, emphasizing the need for restricting trade to BT-free regions of pregnant dams possibly infected during gestation, even if they are BTV RT-qPCR negative.


Preventive Veterinary Medicine | 2014

The Schmallenberg virus epidemic in Europe—2011–2013

Ana Afonso; José Cortiñas Abrahantes; Franz Conraths; Anouk Veldhuis; A.R.W. Elbers; Helen Roberts; Yves Van der Stede; E. Méroc; Kristel Gache; Jane Richardson

During the Schmallenberg virus (SBV) epidemic, the European Food Safety Authority (EFSA) collected data on SBV occurrence across Europe in order to provide an assessment of spread and impact. By May 2013, twenty-nine countries were reporting to EFSA and twenty-two countries had reported cases of SBV. The total number of SBV herds reported was 13,846 and the number of SBV laboratory confirmed herds was 8730. The surveillance activities were based on the detection of SBV clinical cases (either adults or newborns). Malformation in newborns was the most commonly reported clinical sign of SBV-infection. All countries were able to provide the date when the first suspicion of SBV in the herd was reported and nineteen could report the location of the herd at a regional level. This allowed the spread of SBV in Europe to be measured both temporally and spatially. The number of SBV confirmed herds started to increase in December 2011 and two peaks were observed in 2012 (February and May). Confirmed herds continued to be reported in 2012 and into 2013. An increase during winter 2012 and spring 2013 was again observed, but the number of confirmed herds was lower than in the previous year. SBV spread rapidly throughout Europe from the initial area of detection. SBV was detected above the latitude of 60° North, which exceeds the northern expansion observed during the bluetongue virus serotype 8 epidemic in 2006-2009. The impact of SBV was calculated as ratio of the number of herds with at least one malformed SBV positive foetus and the total number of herds in this region. The 75th percentile of the malformations ratio in the various affected countries for the whole reporting period was below 1% and 3% for cattle and sheep herds, respectively. International data collection on emerging diseases represents a challenge as the nature of available data, data quality and the proportion of reported cases may vary widely between affected countries. Surveillance activities on emerging animal diseases are often structured only for case detection making the estimation of infection/diseases prevalence and the investigation of risk factors difficult. The impact of the disease must be determined to allow risk managers to take appropriate decisions. Simple within-herd impact indicators suitable for emerging disease outbreaks should be defined that could be measured as part of routine animal health surveillance programmes and allow for rapid and reliable impact assessment of emerging animal health diseases.


Veterinary Microbiology | 2008

Establishing the spread of bluetongue virus at the end of the 2006 epidemic in Belgium

E. Méroc; Christel Faes; C. Herr; Christoph Staubach; Bart Verheyden; T. Vanbinst; Frank Vandenbussche; J. Hooyberghs; Marc Aerts; K. De Clercq; Koen Mintiens

Bluetongue (BT) was notified for the first time in several Northern European countries in August 2006. The first reported outbreaks of BT were confirmed in herds located near the place where Belgium, The Netherlands and Germany share borders. The disease was rapidly and widely disseminated throughout Belgium in both sheep and cattle herds. During the epidemic, case reporting by the Veterinary Authorities relied almost exclusively on the identification of herds with confirmed clinical infected ruminants. A cross-sectional serological survey targeting all Belgian ruminants was then undertaken during the vector-free season. The first objective of this study was to provide unbiased estimates of BT-seroprevalence for different regions of Belgium. Since under-reporting was suspected during the epidemic, a second goal was to compare the final dispersion of the virus based on the seroprevalence estimates to the dispersion of the confirmed clinical cases which were notified in Belgium, in order to estimate the accuracy of the case detection based on clinical suspicion. True within-herd seroprevalence was estimated based on a logistic-normal regression model with prior specification on the diagnostic tests sensitivity and specificity. The model was fitted in a Bayesian framework. Herd seroprevalence was estimated using a logistic regression model. To study the linear correlation between the BT winter screening data and the case-herds data, the linear predicted values for the herd prevalence were compared and the Pearson correlation coefficient was estimated. The overall herd and true within-herd seroprevalences were estimated at 83.3 (79.2-87.0) and 23.8 (20.1-28.1)%, respectively. BT seropositivity was shown to be widely but unevenly distributed throughout Belgium, with a gradient decreasing towards the south and the west of the country. The analysis has shown there was a strong correlation between the outbreak data and the data from the survey (r=0.73, p<0.0001). The case detection system based on clinical suspicion underestimated the real impact of the epidemic, but indicated an accurate spatial distribution of the virus at the end of the epidemic.


Transboundary and Emerging Diseases | 2015

Follow-up of the Schmallenberg virus seroprevalence in Belgian cattle.

E. Méroc; Antoine Poskin; H. Van Loo; E. Van Driessche; Guy Czaplicki; Christian Quinet; F. Riocreux; N. De Regge; Brigitte Caij; T. van den Berg; J. Hooyberghs; Y. Van der Stede

Schmallenberg virus (SBV), which emerged in Northwestern Europe in 2011, is an arthropod-borne virus affecting primarily ruminants. Based on the results of two cross-sectional studies conducted in the Belgian ruminant population during winter 2011-2012, we concluded that at the end of 2011, almost the whole population had already been infected by SBV. A second cross-sectional serological study was conducted in the Belgian cattle population during winter 2012-2013 to examine the situation after the 2012 transmission period and to analyse the change in immunity after 1 year. A total of 7130 blood samples collected between 1st January and 28 February 2013 in 188 herds were tested for the presence of SBV-specific antibodies. All sampled herds tested positive and within-herd seroprevalence was estimated at 65.66% (95% CI: 62.28-69.04). A statistically significant decrease was observed between the beginning and the end of 2012. On the other hand, age-cohort-specific seroprevalence stayed stable from 1 year to the other. During winter 2012-2013, calves between 6 and 12 months had a seroprevalence of 20.59% (95% CI: 15.34-25.83), which seems to be an indication that SBV was still circulating at least in some parts of Belgium during summer-early autumn 2012. Results showed that the level of immunity against SBV of the animals infected has not decreased and remained high after 1 year and that the spread of the virus has slowed down considerably during 2012. This study also indicated that in the coming years, there are likely to be age cohorts of unprotected animals.


Veterinary Research | 2011

Quantitative analysis of transmission parameters for bluetongue virus serotype 8 in Western Europe in 2006

Aline de Koeijer; Gert Jan Boender; G. Nodelijk; Christoph Staubach; E. Méroc; A.R.W. Elbers

The recent bluetongue virus serotype 8 (BTV-8) epidemic in Western Europe struck hard. Controlling the infection was difficult and a good and safe vaccine was not available until the spring of 2008. Little was known regarding BTV transmission in Western Europe or the efficacy of control measures. Quantitative details on transmission are essential to assess the potential and efficacy of such measures.To quantify virus transmission between herds, a temporal and a spatio-temporal analysis were applied to data on reported infected herds in 2006. We calculated the basic reproduction number between herds (Rh: expected number of new infections, generated by one initial infected herd in a susceptible environment). It was found to be of the same order of magnitude as that of an infection with Foot and Mouth Disease (FMD) in The Netherlands, e.g. around 4. We concluded that an average day temperature of at least 15°C is required for BTV-8 transmission between herds in Western Europe. A few degrees increase in temperature is found to lead to a major increase in BTV-8 transmission.We also found that the applied disease control (spatial zones based on 20 km radius restricting animal transport to outside regions) led to a spatial transmission pattern of BTV-8, with 85% of transmission restricted to a 20 km range. This 20 km equals the scale of the protection zones. We concluded that free animal movement led to substantial faster spread of the BTV-8 epidemic over space as compared to a situation with animal movement restrictions.


Preventive Veterinary Medicine | 2011

A stochastic predictive model for the natural spread of bluetongue

Els Ducheyne; Martin Lange; Yves Van der Stede; E. Méroc; Benoit Durand; Guy Hendrickx

In recent years the vector-borne diseases (VBD) are (re)-emerging and spreading across the world having a profound impact on human and veterinary health, ecology, socio-economics and disease management. Arguably the best-documented example of veterinary importance is the recent twofold invasion of bluetongue (BT) in Europe. Much attention has been devoted to derive presence-absence habitat distribution models and to model transmission through direct contact. Limited research has focused on the dynamic modelling of wind mediated BT spread. This paper shows the results of a stochastic predictive model used to assess the spread of bluetongue by vectors considering both wind-independent and wind-mediated movement of the vectors. The model was parameterised using epidemiological knowledge from the BTV8 epidemic in 2006/2007 and the BTV1 epidemic in 2008 in South-France. The model correctly reflects the total surface of the infected zone (overall accuracy=0.77; sensitivity=0.94; specificity=0.65) whilst slightly overestimating spatial case density. The model was used operationally in spring 2009 to predict further spread of BTV1. This allowed veterinary officers in Belgium to decide whether there was a risk of introduction of BTV1 from France into Belgium and thus, whether there was a need for vaccination. Given the far distance from the predicted infected zone to the Belgian border, it was decided not to vaccinate against BTV1 in 2009 in Belgium.


Transboundary and Emerging Diseases | 2009

Bluetongue in Belgium: Episode II

E. Méroc; C. Herr; Bart Verheyden; J. Hooyberghs; P. Houdart; M. Raemaekers; Frank Vandenbussche; K. De Clercq; Koen Mintiens

Bluetongue (BT) is an arthropod-borne viral disease of ruminants. In August 2006, domestic ruminant populations in Northern Europe became infected with BT virus serotype 8 (BTV-8). The first BTV-8-case of the year 2007 in Belgium was notified in July. This case was the starting point of a second wave of BT outbreaks. The main objective of this study was to describe the evolution and the clinical impact of the second episode of BT in Belgium. In addition, the main differences with the previous episode (August-December 2006) are reported. Both outbreak and rendering plant data were analysed. Overall cumulative incidence at herd level was estimated at 11.5 (11.2-11.8) and 7.5 (7.3-7.8) per cent in cattle and sheep populations respectively. The findings went in favour of a negative association between within-herd prevalence in 2006 and the risk of showing clinical signs of BT in 2007 (via protective immunity). A high level of correlation was demonstrated between BT incidence and small ruminant mortality data when shifting the latter of 1-week backwards. This result supports the hypothesis that the high increase in small ruminant mortality observed in 2007 was the consequence of the presence of BT. For cattle, the correlation was not as high. An increase in cattle foetal mortality was also observed during the year 2007 and a fair correlation was found between BT incidence and foetal mortality.


Preventive Veterinary Medicine | 2008

Impact of human interventions on the spread of bluetongue virus serotype 8 during the 2006 epidemic in north-western Europe.

Koen Mintiens; E. Méroc; Christel Faes; J. Cortiñas Abrahantes; Guy Hendrickx; Christoph Staubach; Guillaume Gerbier; A.R.W. Elbers; Marc Aerts; K. De Clercq

Bluetongue virus (BTV) can be spread by movement or migration of infected ruminants. Infected midges (Culicoides sp.) can be dispersed with livestock or on the wind. Transmissions of infection from host to host by semen and trans-placental infection of the embryo from the dam have been found. As for any infectious animal disease, the spread of BTV can be heavily influenced by human interventions preventing or facilitating the transmission pathways. This paper describes the results of investigations that were conducted on the potential role of the above-mentioned human interventions on the spread of BTV-8 during the 2006 epidemic in north-western Europe. Data on surveillance and control measures implemented in the affected European Union (EU) Member States (MS) were extracted from the legislation and procedures adopted by the national authorities in Belgium, France, Germany, and The Netherlands. The impact of the control measures on the BTV-incidence in time and space was explored. Data on ruminant transports leaving the area of first infection (AFI) to other areas within and beyond the affected MS were obtained from the national identification and registration systems of the three initially affected MS (Belgium, Germany, The Netherlands) and from the Trade Control and Expert System (TRACES) of the European Commission. The association between the cumulative number of cases that occurred in a municipality outside the AFI and the number of movements or the number of animals moved from the AFI to that municipality was assessed using a linear negative binomial regression model. The results of this study indicated that the control measures which were implemented in the affected MS (in accordance with EU directives) were not able to fully stop further spread of BTV and to control the epidemic. This finding is not surprising because BT is a vector-borne disease and it is difficult to limit vector movements. We could not assess the consequences of not taking control measures at all but it is possible, if not most likely, that this would have resulted in even wider spread. The study also showed an indication of the possible involvement of animal movements in the spread of BTV during the epidemic. Therefore, the prevention of animal movements remains an important tool to control BTV outbreaks. The extension of the epidemic to the east cannot be explained by the movement of animals, which mainly occurred in a north-western direction. This indicates that it is important to consider other influential factors such as dispersal of infected vectors depending on wind direction, or local spread.


Preventive Veterinary Medicine | 2009

Identification of risk factors for the prevalence and persistence of Salmonella in Belgian broiler chicken flocks

Harriet Namata; Sarah Welby; Marc Aerts; Christel Faes; José Cortiñas Abrahantes; Hein Imberechts; Katie Vermeersch; J. Hooyberghs; E. Méroc; Koen Mintiens

According to the European Food Safety Authority, salmonellosis is still one of the main causes of infectious foodborne gastroenteritis in humans. Broilers are an important source of salmonellosis after eggs and pork. Between 1987 and 1999 the trend of human salmonellosis incidence in Belgium increased constantly. However, from 2000 until 2005 a decrease in human cases was observed, probably following the sanitary measures implemented in the poultry breeder and laying sector. In order to decrease human infections it is essential to tackle the problem at the farm level to minimize cross-contamination from farm to fork. This paper seeks to answer two questions: (i) given the Salmonella status of the farm at a certain occasion (equal to the sampling time of the flock), what are the risk factors that the farm will be Salmonella positive at a following occasion? And (ii) what are the risk factors for a farm to be persistently positive for two consecutive flocks? We used surveillance data on 6824 broiler flocks studied for Salmonella infectivity from 2005 to 2006 in Belgium. The farms were tested regularly (3 weeks before slaughter of each broiler flock) for the presence of Salmonella based on multiple faecal samples per flock on a farm yielding clustered data. Generalized estimating equations, alternating logistic regression models, and random-intercept logistic regression models were employed to analyse these correlated binary data. Our results indicated that there are many factors that influence Salmonella risk in broiler flocks, and that they interact. Accounting for interactions between risk factors leads to an improved determination of those risk factors that increase infection with Salmonella. For the conditional analysis, the risk factors found to increase the risk of Salmonella infection on a farm at a current occasion given the previous Salmonella status included: Salmonella infection of day-old chicks (of the current flock); a previously infected flock even though the farm was equipped with a hygiene place to change clothes prior to entering the broiler house; having temporary workmen when there was a separation between birds of different species; and separating birds of different species in the Walloon region relative to the Flanders region. Sanitary measures such as a cleaning and disinfecting procedure conducted by an external cleaning firm, applying the all-in all-out procedure, and hand washing decreased the risk despite their interaction with other factors. From the joint analysis, the most important factors identified for increased risk for persistent Salmonella on a farm involved the interaction between having temporary workmen when there were poultry or farmers in contact with foreign poultry or persons, and the interaction between having temporary workmen when there were poultry or farmers in contact with external poultry or persons.

Collaboration


Dive into the E. Méroc's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A.R.W. Elbers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Staubach

Friedrich Loeffler Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bart Verheyden

Katholieke Universiteit Leuven

View shared research outputs
Researchain Logo
Decentralizing Knowledge