E. Michelle Southard-Smith
Vanderbilt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Michelle Southard-Smith.
Development | 2011
Simon Harding; Chris Armit; Jane Armstrong; Jane Brennan; Ying Cheng; Bernard Haggarty; Derek Houghton; Sue Lloyd-MacGilp; Xingjun Pi; Yogmatee Roochun; Mehran Sharghi; Christopher Tindal; Andrew P. McMahon; Brian Gottesman; Melissa H. Little; Kylie Georgas; Bruce J. Aronow; S. Steven Potter; Eric W. Brunskill; E. Michelle Southard-Smith; Cathy Mendelsohn; Richard Baldock; Jamie A. Davies; Duncan Davidson
The GenitoUrinary Development Molecular Anatomy Project (GUDMAP) is an international consortium working to generate gene expression data and transgenic mice. GUDMAP includes data from large-scale in situ hybridisation screens (wholemount and section) and microarray gene expression data of microdissected, laser-captured and FACS-sorted components of the developing mouse genitourinary (GU) system. These expression data are annotated using a high-resolution anatomy ontology specific to the developing murine GU system. GUDMAP data are freely accessible at www.gudmap.org via easy-to-use interfaces. This curated, high-resolution dataset serves as a powerful resource for biologists, clinicians and bioinformaticians interested in the developing urogenital system. This paper gives examples of how the data have been used to address problems in developmental biology and provides a primer for those wishing to use the database in their own research.
Nature Genetics | 2004
Lei Zhu; Hyung-Ok Lee; ChaRandle S Jordan; V. Ashley Cantrell; E. Michelle Southard-Smith; Myung K. Shin
Hirschsprung disease (HSCR) is a multigenic, congenital disorder that affects 1 in 5,000 newborns and is characterized by the absence of neural crest–derived enteric ganglia in the colon. One of the primary genes affected in HSCR encodes the G protein–coupled endothelin receptor-B (EDNRB). The expression of Ednrb is required at a defined time period during the migration of the precursors of the enteric nervous system (ENS) into the colon. In this study, we describe a conserved spatiotemporal ENS enhancer of Ednrb. This 1-kb enhancer is activated as the ENS precursors approach the colon, and partial deletion of this enhancer at the endogenous Ednrb locus results in pigmented mice that die postnatally from megacolon. We identified binding sites for SOX10, an SRY-related transcription factor associated with HSCR, in the Ednrb ENS enhancer, and mutational analyses of these sites suggested that SOX10 may have multiple roles in regulating Ednrb in the ENS.
Mammalian Genome | 2007
Kelly J. Chandler; Ronald L. Chandler; Eva M. Broeckelmann; Yue Hou; E. Michelle Southard-Smith; Douglas P. Mortlock
Bacterial artificial chromosomes (BACs) are excellent tools for manipulating large DNA fragments and, as a result, are increasingly utilized to engineer transgenic mice by pronuclear injection. The demand for BAC transgenic mice underscores the need for careful inspection of BAC integrity and fidelity following transgenesis, which may be crucial for interpreting transgene function. Thus, it is imperative that reliable methods for assessing these parameters are available. However, there are limited data regarding whether BAC transgenes routinely integrate in the mouse genome as intact molecules, how BAC transgenes behave as they are passed through the germline across successive generations, and how variation in BAC transgene copy number relates to transgene expression. To address these questions, we used TaqMan real-time PCR to estimate BAC transgene copy number in BAC transgenic embryos and lines. Here we demonstrate the reproducibility of copy number quantification with this method and describe the variation in copy number across independent transgenic lines. In addition, polymorphic marker analysis suggests that the majority of BAC transgenic lines contain intact molecules. Notably, all lines containing multiple BAC copies also contain all BAC-specific markers. Three of 23 founders analyzed contained BAC transgenes integrated into more than one genomic location. Finally, we show increased BAC transgene copy number correlates with increased BAC transgene expression. In sum, our efforts have provided a reliable method for assaying BAC transgene integrity and fidelity, and data that should be useful for researchers using BACs as transgenic vectors.
Developmental Dynamics | 2006
Karen K. Deal; V. Ashley Cantrell; Ronald L. Chandler; Thomas L. Saunders; Douglas P. Mortlock; E. Michelle Southard-Smith
Sox10 is an essential transcription factor required for development of neural crest‐derived melanocytes, peripheral glia, and enteric ganglia. Multiple transcriptional targets regulated by Sox10 have been identified; however, little is known regarding regulation of Sox10. High sequence conservation surrounding 5′ exons 1 through 3 suggests these regions might contain functional regulatory elements. However, we observed that these Sox10 genomic sequences do not confer appropriate cell‐specific transcription in vitro when linked to a heterologous reporter. To identify elements required for expression of Sox10 in vivo, we modified bacterial artificial chromosomes (BACs) to generate a Sox10βGeoBAC transgene. Our approach leaves endogenous Sox10 loci unaltered, circumventing haploinsufficiency issues that arise from gene targeting. Sox10βGeoBAC expression closely approximates Sox10 expression in vivo, resulting in expression in anterior dorsal neural tube at embryonic day (E) 8.5 and in cranial ganglia, otic vesicle, and developing dorsal root ganglia at E10.5. Characterization of Sox10βGeoBAC expression confirms the presence of essential regulatory regions and additionally identifies previously unreported expression in thyroid parafollicular cells, thymus, salivary, adrenal, and lacrimal glands. Fortuitous deletions in independent Sox10βGeoBAC lines result in loss of transgene expression in peripheral nervous system lineages and coincide with evolutionarily conserved regions. Our analysis indicates that Sox10 expression requires the presence of distant cis‐acting regulatory elements. The Sox10βGeoBAC transgene offers one avenue for specifically testing the role of individual conserved regions in regulation of Sox10 and makes possible analysis of Sox10+ derivatives in the context of normal neural crest development. Developmental Dynamics 235:1413–1432, 2006.
Journal of Biological Chemistry | 1996
Raymond J. MacDonald; E. Michelle Southard-Smith; Evert Kroon
To understand the regulatory diversity of the rat family of linked kallikrein genes, we have assayed the expression of family members in 20 major organs. Reverse transcription-polymerase chain reaction analysis using primers and hybridization probes specific for each of the 10 expressed kallikrein genes showed that no two family members share the same organ-specific pattern of expression. The only common site of expression for all 10 known active genes is the submandibular gland. The presence of the mRNA for at least one family member is detected in 19 of these 20 organs (liver excepted), from as few as three organs to as many as 18 for individual family members. For individual genes there can be more than a 105-fold variation in mRNA levels among organs, from a limit of detection of slightly less than 1 mRNA molecule/10 cells to more than 10,000 mRNA molecules/cell. Despite high sequence conservation and close linkage, the members of this family are expressed in very different and complex patterns. A gradient of diversity of expression corresponds to the order of the genes within the kallikrein family locus.
Development | 2015
Kylie Georgas; Jane Armstrong; Janet R. Keast; Christine E. Larkins; Kirk M. McHugh; E. Michelle Southard-Smith; Martin J. Cohn; Ekatherina Batourina; Hanbin Dan; Kerry Schneider; Dennis P. Buehler; Carrie B. Wiese; Jane Brennan; Jamie A. Davies; Simon Harding; Richard Baldock; Melissa H. Little; Chad M. Vezina; Cathy Mendelsohn
Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. SUMMARY: The developmental anatomy of the lower urinary and reproductive systems of developing and postnatal mice is described, providing a revised ontology to aid the understanding of human urogenital tract abnormalities.
Human Molecular Genetics | 2010
Lauren C. Walters; V. Ashley Cantrell; Kevin P. Weller; Jack T. Mosher; E. Michelle Southard-Smith
Abnormalities in the development of enteric neural crest-derived progenitors (ENPs) that generate the enteric nervous system (ENS) can lead to aganglionosis in a variable portion of the distal gastrointestinal tract. Cumulative evidence suggests that variation of aganglionosis is due to gene interactions that modulate the ability of ENPs to populate the intestine; however, the developmental processes underlying this effect are unknown. We hypothesized that differences in enteric ganglion deficits could be attributable to the effects of genetic background on early developmental processes, including migration, proliferation, or lineage divergence. Developmental processes were investigated in congenic Sox10(Dom) mice, an established Hirschsprung disease (HSCR) model, on distinct inbred backgrounds, C57BL/6J (B6) and C3HeB/FeJ (C3Fe). Immuno-staining on whole-mount fetal gut tissue and dissociated cell suspensions was used to assess migration and proliferation. Flow cytometry utilizing the cell surface markers p75 and HNK-1 was used to isolate live ENPs for analysis of developmental potential. Frequency of ENPs was reduced in Sox10(Dom) embryos relative to wild-type embryos, but was unaffected by genetic background. Both migration and developmental potential of ENPs in Sox10(Dom) embryos were altered by inbred strain background with the most highly significant differences seen for developmental potential between strains and genotypes. In vivo imaging of fetal ENPs and postnatal ganglia demonstrates that altered lineage divergence impacts ganglia in the proximal intestine. Our analysis demonstrates that genetic background alters early ENS development and suggests that abnormalities in lineage diversification can shift the proportions of ENP populations and thus may contribute to ENS deficiencies in vivo.
Cell Reports | 2015
Christopher Dravis; Benjamin T. Spike; J. Chuck Harrell; Claire Johns; Christy L. Trejo; E. Michelle Southard-Smith; Charles M. Perou; Geoffrey M. Wahl
To discover mechanisms that mediate plasticity in mammary cells, we characterized signaling networks that are present in the mammary stem cells responsible for fetal and adult mammary development. These analyses identified a signaling axis between FGF signaling and the transcription factor Sox10. Here, we show that Sox10 is specifically expressed in mammary cells exhibiting the highest levels of stem/progenitor activity. This includes fetal and adult mammary cells in vivo and mammary organoids in vitro. Sox10 is functionally relevant, as its deletion reduces stem/progenitor competence whereas its overexpression increases stem/progenitor activity. Intriguingly, we also show that Sox10 overexpression causes mammary cells to undergo a mesenchymal transition. Consistent with these findings, Sox10 is preferentially expressed in stem- and mesenchymal-like breast cancers. These results demonstrate a signaling mechanism through which stem and mesenchymal states are acquired in mammary cells and suggest therapeutic avenues in breast cancers for which targeted therapies are currently unavailable.
Developmental Dynamics | 2008
Jennifer C. Corpening; V. Ashley Cantrell; Karen K. Deal; E. Michelle Southard-Smith
The mammalian enteric nervous system (ENS) derives from migratory enteric neural crest–derived cells (ENCC) that express the transcription factor Phox2b. Studies of these enteric progenitors have typically relied on immunohistochemical (IHC) detection. To circumvent complicating factors of IHC, we have generated a mouse BAC transgenic line that drives a Histone2BCerulean (H2BCFP) reporter from Phox2b regulatory regions. This construct does not alter the endogenous Phox2b locus and enables studies of normal neural crest (NC) derivatives. The Phox2b‐H2BCFP transgene expresses the H2BCFP reporter in patterns that recapitulate expression of endogenous Phox2b. Our studies reveal Phox2b expression in mature enteric glia at levels below that of enteric neurons. Moreover, we also observe differential expression of the transgene reporter within the leading ENCC that traverse the gut. Our findings indicate that the wavefront of migrating enteric progenitors is not homogeneous, and suggest these cells may be fate‐specified before expression of mature lineage markers appears. Developmental Dynamics 237:1119–1132, 2008.
Developmental Biology | 2012
Nathan A. Mundell; Jennifer L. Plank; Alison W. LeGrone; Audrey Y. Frist; Lei Zhu; Myung K. Shin; E. Michelle Southard-Smith; Patricia A. Labosky
The enteric nervous system (ENS) arises from the coordinated migration, expansion and differentiation of vagal and sacral neural crest progenitor cells. During development, vagal neural crest cells enter the foregut and migrate in a rostro-to-caudal direction, colonizing the entire gastrointestinal tract and generating the majority of the ENS. Sacral neural crest contributes to a subset of enteric ganglia in the hindgut, colonizing the colon in a caudal-to-rostral wave. During this process, enteric neural crest-derived progenitors (ENPs) self-renew and begin expressing markers of neural and glial lineages as they populate the intestine. Our earlier work demonstrated that the transcription factor Foxd3 is required early in neural crest-derived progenitors for self-renewal, multipotency and establishment of multiple neural crest-derived cells and structures including the ENS. Here, we describe Foxd3 expression within the fetal and postnatal intestine: Foxd3 was strongly expressed in ENPs as they colonize the gastrointestinal tract and was progressively restricted to enteric glial cells. Using a novel Ednrb-iCre transgene to delete Foxd3 after vagal neural crest cells migrate into the midgut, we demonstrated a late temporal requirement for Foxd3 during ENS development. Lineage labeling of Ednrb-iCre expressing cells in Foxd3 mutant embryos revealed a reduction of ENPs throughout the gut and loss of Ednrb-iCre lineage cells in the distal colon. Although mutant mice were viable, defects in patterning and distribution of ENPs were associated with reduced proliferation and severe reduction of glial cells derived from the Ednrb-iCre lineage. Analyses of ENS-lineage and differentiation in mutant embryos suggested activation of a compensatory population of Foxd3-positive ENPs that did not express the Ednrb-iCre transgene. Our findings highlight the crucial roles played by Foxd3 during ENS development including progenitor proliferation, neural patterning, and glial differentiation and may help delineate distinct molecular programs controlling vagal versus sacral neural crest development.