Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Novo is active.

Publication


Featured researches published by E. Novo.


Hepatology | 2005

Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells

Sara Aleffi; Ilaria Petrai; C. Bertolani; Maurizio Parola; S. Colombatto; E. Novo; Francesco Vizzutti; Frank A. Anania; Stefano Milani; Krista Rombouts; Giacomo Laffi; Massimo Pinzani; Fabio Marra

Leptin upregulates collagen expression in hepatic stellate cells (HSCs), but the possible modulation of other actions has not been elucidated. The aim of this study was to investigate the expression and function of leptin receptors (ObR) in human HSCs and the biological actions regulated by leptin. Exposure of HSCs to leptin resulted in upregulation of monocyte chemoattractant protein 1 (MCP‐1) expression. Leptin also increased gene expression of the proangiogenic cytokines vascular endothelial growth factor (VEGF) and angiopoietin‐1, and VEGF was also upregulated at the protein level. Activated HSCs express ObRb and possibly other ObR isoforms. Exposure to leptin increased the tyrosine kinase activity of ObR immunoprecipitates and resulted in activation of signal transducer and activator of transcription 3. Several signaling pathways were activated by leptin in HSCs, including extracellular‐signal–regulated kinase, Akt, and nuclear factor κB, the latter being relevant for chemokine expression. Leptin also increased the abundance of hypoxia‐inducible factor 1α, which regulates angiogenic gene expression, in an extracellular‐signal–regulated kinase– and phoshatidylinositol 3‐kinase–dependent fashion. In vivo, leptin administration induced higher MCP‐1 expression and more severe inflammation in mice after acute liver injury. Conversely, in leptin‐deficient mice, the increase in MCP‐1 messenger RNA and mononuclear infiltration was less marked than in wild‐type littermates. Finally, ObR expression colocalized with VEGF and α‐smooth muscle actin after induction of fibrosis in rats. In conclusion, ObR activation in HSCs leads to increased expression of proinflammatory and proangiogenic cytokines, indicating a complex role for leptin in the regulation of the liver wound‐healing response.(HEPATOLOGY 2005;42:1339–1348.)


Carcinogenesis | 2008

Redox mechanisms switch on hypoxia-dependent epithelial–mesenchymal transition in cancer cells

S. Cannito; E. Novo; Alessandra Compagnone; Lorenzo Valfrè di Bonzo; C. Busletta; E. Zamara; Claudia Paternostro; Davide Povero; Andrea Bandino; Francesca Bozzo; Carlo Cravanzola; Vittoria Bravoco; S. Colombatto; Maurizio Parola

Epithelial-mesenchymal transition (EMT) and hypoxia are considered as crucial events favouring invasion and metastasis of many cancer cells. In this study, different human neoplastic cell lines of epithelial origin were exposed to hypoxic conditions in order to investigate whether hypoxia per se may trigger EMT programme as well as to mechanistically elucidate signal transduction mechanisms involved. The following human cancer cell lines were used: HepG2 (from human hepatoblastoma), PANC-1 (from pancreatic carcinoma), HT-29 (from colon carcinoma) and MCF-7 (from breast carcinoma). Cancer cells were exposed to carefully controlled hypoxic conditions and investigated for EMT changes and signal transduction by using morphological, cell and molecular biology techniques. All cancer cells responded to hypoxia within 72 h by classic EMT changes (fibroblastoid phenotype, SNAIL and beta-catenin nuclear translocation and changes in E-cadherin) and by increased migration and invasiveness. This was involving very early inhibition of glycogen synthase kinase-3beta (GSK-3beta), early SNAIL translocation as well as later and long-lasting activation of Wnt/beta-catenin-signalling machinery. Experimental manipulation, including silencing of hypoxia-inducible factor (HIF)-1alpha and the specific inhibition of mitochondrial generation of reactive oxygen species (ROS), revealed that early EMT-related events induced by hypoxia (GSK-3beta inhibition and SNAIL translocation) were dependent on transient intracellular increased generation of ROS whereas late migration and invasiveness were sustained by HIF-1alpha- and vascular endothelial growth factor (VEGF)-dependent mechanisms. These findings indicate that in cancer cells, early redox mechanisms can switch on hypoxia-dependent EMT programme whereas increased invasiveness is sustained by late and HIF-1alpha-dependent release of VEGF.


Gut | 2008

Human mesenchymal stem cells as a two-edged sword in hepatic regenerative medicine: engraftment and hepatocyte differentiation versus profibrogenic potential

L. Valfrè di Bonzo; Ivana Ferrero; Carlo Cravanzola; Katia Mareschi; D Rustichell; E. Novo; F. Sanavio; S. Cannito; E. Zamara; M Bertero; A. Davit; S. Francica; F. Novelli; S. Colombatto; Franca Fagioli; Maurizio Parola

Background and aim: Mesenchymal stem cells from bone marrow (MSCs) may have the potential to differentiate in vitro and in vivo into hepatocytes. We investigated whether transplanted human MSCs (hMSCs) may engraft the liver of non-obese diabetic severe combined immuno-deficient (NOD/SCID) mice and differentiate into cells of hepatic lineage. Methods: Ex vivo expanded, highly purified and functionally active hMSCs from bone marrow were transplanted (caudal vein) in sublethally irradiated NOD/SCID mice that were either exposed or not to acute liver injury or submitted to a protocol of chronic injury (single or chronic intraperitoneal injection of CCl4, respectively). Chimeric livers were analysed for expression of human transcripts and antigens. Results: Liver engraftment of cells of human origin was very low in normal and acutely injured NOD/SCID mice with significantly higher numbers found in chronically injured livers. However, hepatocellular differentiation was relatively rare, limited to a low number of cells (ranging from less than 0.1% to 0.23%) as confirmed by very low or not detectable levels of human transcripts for α-fetoprotein, CK18, CK19 and albumin in either normal or injured livers. Finally, a significant number of cells of human origin exhibited a myofibroblast-like morphology. Conclusions: Transplanted hMSCs have the potential to migrate into normal and injured liver parenchyma, particularly under conditions of chronic injury, but differentiation into hepatocyte-like cells is a rare event and pro-fibrogenic potential of hMSC transplant should be not under-evaluated.


Journal of Neurochemistry | 2009

The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1α

Michela Guglielmotto; Manuela Aragno; Riccardo Autelli; Luca Giliberto; E. Novo; S. Colombatto; Oliviero Danni; Maurizio Parola; Mark A. Smith; George Perry; Elena Tamagno; Massimo Tabaton

While it is well established that stroke and cerebral hypoperfusion are both significant risk factors for Alzheimer’s disease, the molecular link between ischemia and amyloid precursor protein processing has only been recently established. Specifically, hypoxia significantly increases β‐site APP cleaving enzyme (BACE1) gene transcription through the over‐expression of hypoxia inducible factor 1α, resulting in increased BACE1 secretase activity and amyloid‐β production. In this study, we significantly extend these findings both in vitro, in differentiated SK‐N‐BE neuroblastoma cells, and in vivo, in rats subjected to cerebral ischemia, showing that hypoxia up‐regulates BACE1 expression through a biphasic mechanism. The early post‐hypoxic up‐regulation of BACE1 depends on the production of reactive oxygen species mediated by the sudden interruption of the mitochondrial electron transport chain, while the later expression of BACE1 is caused by hypoxia inducible factor 1α activation. The involvement of reactive oxygen species released by mitochondria in the BACE1 up‐regulation was confirmed by the complete protection exerted by complex I inhibitors such as rotenone and diphenyl‐phenylen iodonium. Moreover, the oxidative stress‐mediated up‐regulation of BACE1 is mediated by c‐jun N terminal kinase pathway as demonstrated by the protection exerted by the silencing of c‐jun N‐terminal kinase isoforms 1 and 2. Our study strengthens the hypothesis that oxidative stress is a basic common mechanism of amyloid‐β accumulation.


Antioxidants & Redox Signaling | 2010

Epithelial–Mesenchymal Transition: From Molecular Mechanisms, Redox Regulation to Implications in Human Health and Disease

S. Cannito; E. Novo; Lorenzo Valfrè di Bonzo; C. Busletta; S. Colombatto; Maurizio Parola

Epithelial to mesenchymal transition (EMT) is a fundamental process, paradigmatic of the concept of cell plasticity, that leads epithelial cells to lose their polarization and specialized junctional structures, to undergo cytoskeleton reorganization, and to acquire morphological and functional features of mesenchymal-like cells. Although EMT has been originally described in embryonic development, where cell migration and tissue remodeling have a primary role in regulating morphogenesis in multicellular organisms, recent literature has provided evidence suggesting that the EMT process is a more general biological process that is also involved in several pathophysiological conditions, including cancer progression and organ fibrosis. This review offers first a comprehensive introduction to describe major relevant features of EMT, followed by sections dedicated on those signaling mechanisms that are known to regulate or affect the process, including the recently proposed role for oxidative stress and reactive oxygen species (ROS). Current literature data involving EMT in both physiological conditions (i.e., embryogenesis) and major human diseases are then critically analyzed, with a special final focus on the emerging role of hypoxia as a relevant independent condition able to trigger EMT.


Gut | 2005

Overexpression of Bcl-2 by activated human hepatic stellate cells: resistance to apoptosis as a mechanism of progressive hepatic fibrogenesis in humans

E. Novo; Fabio Marra; E. Zamara; L. Valfrè di Bonzo; L. Monitillo; S. Cannito; Ilaria Petrai; Antonio Mazzocca; Andrea Bonacchi; R De Franco; S. Colombatto; Riccardo Autelli; Massimo Pinzani; Maurizio Parola

Background and aims: Myofibroblast-like cells, originating from activation of hepatic stellate cells (HSC/MFs), play a key role in liver fibrosis, a potentially reversible process that may rely on induction of HSC/MFs apoptosis. While this possibility has been shown in cultured rat HSC, very limited data are currently available for human HSC/MFs. Methods: Cultured human HSC/MFs were exposed to several proapoptotic stimuli, including those known to induce apoptosis in rat HSC/MFs, and induction of cell death and related mechanisms were investigated using morphology, molecular biology, and biochemical techniques. Results: In this study we report that fully activated human HSC/MFs did not undergo spontaneous apoptosis and survived to prolonged serum deprivation, Fas activation, or exposure to nerve growth factor, tumour necrosis factor α (TNF-α), oxidative stress mediators, doxorubicin, and etoposide. Induction of caspase dependent, mitochondria driven apoptosis in HSC/MFs was observed only when protein synthesis or transcription were inhibited. Importantly, the process of HSC activation was accompanied by changes in expression of a set of genes involved in apoptosis control. In particular, activated human HSC/MFs in culture overexpressed Bcl-2. The role of Bcl-2 was crucial as Bcl-2 silenced cells became susceptible to TNF-α induced apoptosis. Finally, Bcl-2 was markedly expressed in HSC/MFs present in liver tissue obtained from patients with hepatitis C virus related cirrhosis. Conclusions: Human activated HSC/MFs are resistant to most proapoptotic stimuli due to Bcl-2 overexpression and this feature may play a key role in the progression of fibrosis in chronic liver diseases.


Journal of Hepatology | 2009

Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells

Marco Trappoliere; Alessandra Caligiuri; Monika Schmid; C. Bertolani; Paola Failli; Francesco Vizzutti; E. Novo; Carlo di Manzano; Fabio Marra; Carmela Loguercio; Massimo Pinzani

BACKGROUND/AIMS Hepatic fibrogenesis, a consequence of chronic liver tissue damage, is characterized by activation of the hepatic stellate cells (HSC). Silybin has been shown to exert anti-fibrogenic effects in animal models. However, scant information is available on the fine cellular and molecular events responsible for this effect. The aim of this study was to assess the mechanisms regulating the anti-fibrogenic and anti-inflammatory activity of Silybin. METHODS Experiments were performed on HSC isolated from human liver and activated by culture on plastic. RESULTS Silybin was able to inhibit dose-dependently (25-50 microM) growth factor-induced pro-fibrogenic actions of activated human HSC, including cell proliferation (P < 0.001), cell motility (P < 0.001), and de novo synthesis of extracellular matrix components (P < 0.05). Silybin (25-50 microM), inhibited the IL-1-induced synthesis of MCP-1 (P < 0.01) and IL-8 (P < 0.01) showing a potent anti-inflammatory activity. Silybin exerts its effects by directly inhibiting the ERK, MEK and Raf phosphorylation, reducing the activation of NHE1 (Na+/H+ exchanger, P < 0.05) and the IkBalpha phosphorylation. In addition, Silybin was confirmed to act as a potent anti-oxidant agent. CONCLUSION The results of the study provide molecular insights into the potential therapeutic action of Silybin in chronic liver disease. This action seems to be mostly related to a marked inhibition of the production of pro-inflammatory cytokines, a clear anti-oxidant effect and a reduction of the direct and indirect pro-fibrogenic potential of HSC.


The International Journal of Biochemistry & Cell Biology | 2009

Hepatic myofibroblasts: A heterogeneous population of multifunctional cells in liver fibrogenesis

E. Novo; Lorenzo Valfrè di Bonzo; S. Cannito; S. Colombatto; Maurizio Parola

Hepatic myofibroblasts constitute a heterogeneous population of highly proliferative, pro-fibrogenic, pro-inflammatory, pro-angiogenic and contractile cells that sustain liver fibrogenesis and then fibrotic progression of chronic liver diseases of different aetiology to the common advanced-stage of cirrhosis. These alpha-smooth muscle actin-positive myofibroblast-like cells, according to current literature, mainly originate by a process of activation and trans-differentiation that involves either hepatic stellate cells or fibroblasts of portal areas. Hepatic myofibroblasts can also originate from bone marrow-derived cells, including mesenchymal stem cells or circulating fibrocytes able to engraft chronically injured liver, as well as, in certain conditions, by a process of epithelial to mesenchymal transition involving hepatocytes and cholangiocytes. Hepatic myofibroblasts may have also additional crucial roles in modulating immune response and in the cross talk with hepatic progenitor (stem) cells as well as with malignant cells of either primary hepatocellular carcinomas or of metastatic cancers.


Journal of Hepatology | 2011

Intracellular reactive oxygen species are required for directional migration of resident and bone marrow-derived hepatic pro-fibrogenic cells

E. Novo; C. Busletta; Lorenzo Valfrè di Bonzo; Davide Povero; Claudia Paternostro; Katia Mareschi; Ivana Ferrero; Ezio David; C. Bertolani; Alessandra Caligiuri; S. Cannito; Elena Tamagno; Alessandra Compagnone; S. Colombatto; Fabio Marra; Franca Fagioli; Massimo Pinzani; Maurizio Parola

BACKGROUND & AIMS Liver fibrogenesis is sustained by myofibroblast-like cells originating from hepatic stellate cells (HSC/MFs), portal fibroblasts or bone marrow-derived cells, including mesenchymal stem cells (MSCs). Herein, we investigated the mechanistic role of intracellular generation of reactive oxygen species (ROS) and redox-sensitive signal transduction pathways in mediating chemotaxis, a critical profibrogenic response for human HSC/MFs and for MSC potentially engrafting chronically injured liver. METHODS Intracellular generation of ROS and signal transduction pathways were evaluated by integrating morphological and molecular biology techniques. Chemokinesis and chemotaxis were evaluated by wound healing assay and modified Boydens chamber assay, respectively. Additional in vivo evidence was obtained in human specimens from HCV-related cirrhosis. RESULTS Human MSCs and HSC/MFs migrate in response to a panel of polypeptide chemoattractants and extracellularly generated superoxide anion. All polypeptides induced a NADPH-oxidase-dependent intracellular rise in ROS, resulting in activation of ERK1/2 and JNK1/2. Moreover, menadione or 2,3-dimethoxy-1,4-naphthoquinone, which generate intracellular superoxide anion or hydrogen peroxide, respectively, induced ERK1/2 and JNK1/2 activation and migration. JNK1 activation was predominant for migration as shown by specific silencing. Finally, activation of ERK1/2 and JNK1/2 was found in extracts obtained from HSC/MFs during the course of an oxidative stress-mediated model of liver injury and phosphorylated JNK1/2 isoforms were detected in α-smooth muscle actin-positive myofibroblasts lining fibrotic septa in human cirrhotic livers. CONCLUSIONS Intracellular generation of ROS, through activation of specific signaling pathways, is a critical event for directional migration of HSC/MFs and MSCs.


Gut | 2006

Dose-dependent and divergent effects of superoxide anion on cell death, proliferation and migration of activated human hepatic stellate cells

E. Novo; Fabio Marra; E. Zamara; L. Valfrè di Bonzo; Alessandra Caligiuri; S. Cannito; C Antonaci; S. Colombatto; Massimo Pinzani; Maurizio Parola

Background and aim: Activated myofibroblast-like cells, originating from hepatic stellate cells (HSC/MFs) or other cellular sources, play a key profibrogenic role in chronic liver diseases (CLDs) that, as suggested by studies in animal models or rat HSC/MFs, may be modulated by reactive oxygen intermediates (ROI). In this study, human HSC/MFs, exposed to different levels of superoxide anion (O2•−) and, for comparison, hydrogen peroxide (H2O2), were analysed in terms of cytotoxicity, proliferative response, and migration. Methods: Cultured human HSC/MFs were exposed to controlled O2•− generation by hypoxanthine/xanthine oxidase systems or to a range of H2O2 concentrations. Induction of cell death, proliferation, and migration were investigated using morphology, molecular biology, and biochemical techniques. Results: Human HSC/MFs were shown to be extremely resistant to induction of cell death by O2•− and only high rates of O2•− generation induced either necrotic or apoptotic cell death. Non-cytotoxic low levels of O2•−, able to upregulate procollagen type I expression (but not tissue inhibitor of metalloproteinase 1 and 2), stimulated migration of human HSC/MFs in a Ras/extracellular regulated kinase (ERK) dependent, antioxidant sensitive way, without affecting basal or platelet derived growth factor (PDGF) stimulated cell proliferation. Non-cytotoxic levels of H2O2 did not affect Ras/ERK or proliferative response. A high rate of O2•− generation or elevated levels of H2O2 induced cytoskeletal alterations, block in motility, and inhibition of PDGF dependent DNA synthesis. Conclusions: Low non-cytotoxic levels of extracellularly generated O2•− may stimulate selected profibrogenic responses in human HSC/MFs without affecting proliferation.

Collaboration


Dive into the E. Novo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio Marra

University of Florence

View shared research outputs
Top Co-Authors

Avatar

Massimo Pinzani

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Davide Povero

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge