E. P. Evans
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. P. Evans.
Nature | 2007
Paul J. Tesar; Josh G. Chenoweth; Frances A. Brook; Timothy J. Davies; E. P. Evans; David L. Mack; Richard L. Gardner; Ronald D. G. McKay
The application of human embryonic stem (ES) cells in medicine and biology has an inherent reliance on understanding the starting cell population. Human ES cells differ from mouse ES cells and the specific embryonic origin of both cell types is unclear. Previous work suggested that mouse ES cells could only be obtained from the embryo before implantation in the uterus. Here we show that cell lines can be derived from the epiblast, a tissue of the post-implantation embryo that generates the embryo proper. These cells, which we refer to as EpiSCs (post-implantation epiblast-derived stem cells), express transcription factors known to regulate pluripotency, maintain their genomic integrity, and robustly differentiate into the major somatic cell types as well as primordial germ cells. The EpiSC lines are distinct from mouse ES cells in their epigenetic state and the signals controlling their differentiation. Furthermore, EpiSC and human ES cells share patterns of gene expression and signalling responses that normally function in the epiblast. These results show that epiblast cells can be maintained as stable cell lines and interrogated to understand how pluripotent cells generate distinct fates during early development.
Nature | 2002
Qi-Long Ying; Jennifer Nichols; E. P. Evans; Austin Smith
Recent reports have suggested that mammalian stem cells residing in one tissue may have the capacity to produce differentiated cell types for other tissues and organs1–9. Here we define a mechanism by which progenitor cells of the central nervous system can give rise to non-neural derivatives. Cells taken from mouse brain were co-cultured with pluripotent embryonic stem cells. Following selection for a transgenic marker carried only by the brain cells, undifferentiated stem cells are recovered in which the brain cell genome has undergone epigenetic reprogramming. However, these cells also carry a transgenic marker and chromosomes derived from the embryonic stem cells. Therefore the altered phenotype does not arise by direct conversion of brain to embryonic stem cell but rather through spontaneous generation of hybrid cells. The tetraploid hybrids exhibit full pluripotent character, including multilineage contribution to chimaeras. We propose that transdetermination consequent to cell fusion10 could underlie many observations otherwise attributed to an intrinsic plasticity of tissue stem cells9.
Cell | 1983
Elizabeth Lacy; Sally Roberts; E. P. Evans; Mike D. Burtenshaw; Franklin D. Costantini
We have investigated the chromosomal location, inheritance, and expression of a cloned rabbit beta-globin gene introduced into the mouse germ line by microinjection into mouse eggs. Experiments utilizing in situ hybridization to metaphase chromosomes show that the gene has integrated into one or two different chromosomal loci in each of five mouse lines analyzed. Each locus contains between three and forty copies of the foreign DNA sequence arranged in a tandem array, and the sequences at each locus are stably inherited as a single Mendelian marker. Neither globin mRNA nor polypeptides encoded by the rabbit beta-globin gene are detected in erythroid cells in the seven transgenic lines examined, indicating that the expression of the foreign gene is not correctly regulated. However, in two of the mouse lines, rabbit beta-globin transcripts are found at a low level in specific, although inappropriate, tissues: skeletal muscle in one line and testis in another line. These unusual patterns of beta-globin gene transcription are heritable traits in the two mouse lines and may result from the beta-globin genes integration at abnormal chromosomal positions.
Annals of Human Genetics | 1989
A. G. Searle; J. Peters; M. F. Lyon; J. G. Hall; E. P. Evans; J. H. Edwards; Veronica J. Buckle
Current knowledge of man‐mouse genetic homology is presented in the form of chromosomal displays, tables and a grid, which show locations of the 322 loci now assigned to chromosomes in both species, as well as 12 DNA segments not yet associated with gene loci. At least 50 conserved autosomal segments with two or more loci have been identified, twelve of which are over 20 cM long in the mouse, as well as five conserved segments on the X chromosome. All human and mouse chromosomes now have conserved regions; human 17 still shows the least evidence of rearrangement, with a single long conserved segment which apparently spans the centromere. The loci include 102 which are known to be associated with human hereditary disease; these are listed separately. Human parental effects which may well be the result of genomic imprinting are reviewed and the location of the factors concerned displayed in relation to mouse chromosomal regions which have been implicated in imprinting phenomena.
Nucleic Acids Research | 1993
Michael A. Barnett; Veronica J. Buckle; E. P. Evans; Andrew C. G. Porter; Derek Rout; Austin Smith; William Brown
Cloned human telomeric DNA can integrate into mammalian chromosomes and seed the formation of new telomeres. This process occurs efficiently in three established human cell lines and in a mouse embryonic stem cell line. The newly seeded telomeres appear to be healed by telomerase. The seeding of new telomeres by cloned telomeric DNA is either undetectable or very inefficient in non-tumourigenic mouse or human somatic cell lines. The cytogenetic consequences of the seeding of new telomeres include large chromosome truncations but most of the telomere seeding events occur close to the pre-existing ends of natural chromosomes.
Genetics Research | 1990
Bruce M. Cattanach; C. Rasberry; M. D. Burtenshaw; E. P. Evans
X/Y male mice carrying the sex reversal factor, Sxr, on their Y chromosomes typically produce 4 classes of progeny (recombinant X/X Sxr male male and X/Y non-Sxr male male, and non-recombinant X/X female female and X/Y Sxr male male) in equal frequencies, these deriving from obligatory crossing over between the chromatids of the X and Y during meiosis. Here we show that X/Y males that, exceptionally, carry Sxr on their X chromosome, rather than their Y, produce fewer recombinants than expected. Cytological studies confirmed that X-Y univalence is frequent (58%) at diakinesis as in X/Y Sxr males, but among those cells with X-Y bivalents only 38% showed normal X-Y pseudo-autosomal pairing. The majority of such cells (62%) instead showed an illegitimate pairing between the short arms of the Y and the Sxr region located at the distal end of the X, and this can be understood in terms of the known homology between the testis-determining region of the Y short arm and that of the Sxr region. This pairing was sufficiently tenacious to suggest that crossing over took place between the 2 regions, and misalignment and unequal exchange were suggested by indications of bivalent asymmetry. Metaphase II cells deriving from meiosis I divisions in which the normal X-Y exchange had not occurred were also found. The cytological data are therefore consistent with the breeding results and suggest that normal pseudo-autosomal pairing and crossing over is not a prerequisite for functional germ cell formation.(ABSTRACT TRUNCATED AT 250 WORDS)
Genetics Research | 1990
E. P. Evans; M. D. Burtenshaw; S. H. Laval; D. Goundis; K. B. M. Reid; Y. Boyd
The locus for properdin (properdin factor complement, Pfc), a plasma glycoprotein, has been mapped to band A3 of the mouse X chromosome by in situ hybridization to metaphase spreads containing an X;2 Robertsonian translocation. The X-linkage of the locus has also been confirmed by analysis of Mus musculus x Mus spretus interspecific crosses. The XA3 localization for Pfc places it in the chromosomal segment conserved between man and mouse which is known to contain at least six other homologous loci (Cybb, Otc, Syn-1 Maoa, Araf, Timp).
Genetics Research | 1990
E. P. Evans; George Breckon; Josephine Peters
A male mouse with irregular white spotting, typical of piebald, s, arose during an experiment designed to search for mutations induced in spermatogonial cells by ethylnitrosourea (ENU). On being examined cytologically it was found to carry 40 chromosomes but was effectively XXY since one of the two X chromosomes present was distally fused to a Y chromosome. In common with the previously described XXY mice, all of which carried 41 chromosomes, the mouse was sterile with a total absence of germ cells. Because of this, it was not possible to determine if the white spotting was inherited. The spotting could not be related to any observable abnormality of chromosomes known to carry spotting genes, nor could it be linked in any way with the X and Y fusion. It was concluded from the cytological considerations and the time interval (6 months) that had elapsed between mutagen treatment and birth of the offspring, that whereas the spotting was probably the result of ENU damage in a spermatogonial stem cell, the XY fusion was probably a later and spontaneous event.
In Vitro Cellular & Developmental Biology – Animal | 2010
Frances Anne Brook; Sally A. Cowley; E. P. Evans; Karen Turner; William James; Helen J. Mardon
OxF1 is a human embryonic stem cell line derived from a surplus embryo donated through the Oxford IVF clinic. The cells have a stable 46 XX karyotype and show expression of Oct 4, Nanog and TRA-1-60. Embryoid bodies differentiate into cells that represent all three germ layers as demonstrated by immunohistochemical localisation of beta III tubulin, nestin, desmin, smooth muscle actin, Gata 6 and cytokeratin 18. Directed differentiation through haematopoiesis has been demonstrated.
Development | 1990
Jennifer Nichols; E. P. Evans; Austin Smith