E. P. Yu
Sandia National Laboratories
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. P. Yu.
Physics of Plasmas | 2005
M. Keith Matzen; M. A. Sweeney; R. G. Adams; J. R. Asay; J. E. Bailey; Guy R. Bennett; D.E. Bliss; Douglas D. Bloomquist; T. A. Brunner; Robert B. Campbell; Gordon Andrew Chandler; C.A. Coverdale; M. E. Cuneo; Jean-Paul Davis; C. Deeney; Michael P. Desjarlais; G. L. Donovan; Christopher Joseph Garasi; Thomas A. Haill; C. A. Hall; D.L. Hanson; M. J. Hurst; B. Jones; M. D. Knudson; R. J. Leeper; R.W. Lemke; M.G. Mazarakis; D. H. McDaniel; T.A. Mehlhorn; T. J. Nash
The Z accelerator [R. B. Spielman, W. A. Stygar, J. F. Seamen et al., Proceedings of the 11th International Pulsed Power Conference, Baltimore, MD, 1997, edited by G. Cooperstein and I. Vitkovitsky (IEEE, Piscataway, NJ, 1997), Vol. 1, p. 709] at Sandia National Laboratories delivers ∼20MA load currents to create high magnetic fields (>1000T) and high pressures (megabar to gigabar). In a z-pinch configuration, the magnetic pressure (the Lorentz force) supersonically implodes a plasma created from a cylindrical wire array, which at stagnation typically generates a plasma with energy densities of about 10MJ∕cm3 and temperatures >1keV at 0.1% of solid density. These plasmas produce x-ray energies approaching 2MJ at powers >200TW for inertial confinement fusion (ICF) and high energy density physics (HEDP) experiments. In an alternative configuration, the large magnetic pressure directly drives isentropic compression experiments to pressures >3Mbar and accelerates flyer plates to >30km∕s for equation of state ...
Physics of Plasmas | 2006
M. E. Cuneo; Daniel Brian Sinars; E.M. Waisman; D.E. Bliss; W. A. Stygar; Roger Alan Vesey; R.W. Lemke; I. C. Smith; Patrick K. Rambo; John L. Porter; Gordon Andrew Chandler; T. J. Nash; M.G. Mazarakis; R. G. Adams; E. P. Yu; K.W. Struve; T.A. Mehlhorn; S. V. Lebedev; J. P. Chittenden; Christopher A. Jennings
Wire-array z pinches show promise as a high-power, efficient, reproducible, and low-cost x-ray source for high-yield indirect-drive inertial confinement fusion. Recently, rapid progress has been made in our understanding of the implosion dynamics of compact (20-mm-diam), high-current (11–19MA), single and nested wire arrays. As at lower currents (1–3MA), a single wire array (and both the outer and inner array of a nested system), show a variety of effects that arise from the initially discrete nature of the wires: a long wire ablation phase for 50%-80% of the current pulse width, an axial modulation of the ablation rate prior to array motion, a larger ablation rate for larger diameter wires, trailing mass, and trailing current. Compact nested wire arrays operate in current-transfer or transparent mode because the inner wires remain discrete during the outer array implosion, even for interwire gaps in the outer and inner arrays as small as 0.21mm. These array physics insights have led to nested arrays that...
Physics of Plasmas | 2005
Daniel Brian Sinars; M. E. Cuneo; B. Jones; C.A. Coverdale; T. J. Nash; M.G. Mazarakis; John L. Porter; C. Deeney; David Franklin Wenger; R. G. Adams; E. P. Yu; D.E. Bliss; G. S. Sarkisov
The mass distribution and axial instability growth of wire-array Z-pinch implosions driven by 14–20 MA has been studied using high-resolution, monochromatic x-ray backlighting diagnostics. A delayed implosion is consistently observed in which persistent, dense wire cores continuously ablate plasma until they dissipate and the main implosion begins. In arrays with small interwire gaps, azimuthally correlated axial instabilities appear during the wire ablation stage and subsequently seed the early growth of magneto-Rayleigh–Taylor instabilities. The instabilities create a distributed implosion front with trailing mass that may limit the peak radiation power.
Plasma Physics and Controlled Fusion | 2006
M. E. Cuneo; Roger Alan Vesey; Guy R. Bennett; Daniel Brian Sinars; W. A. Stygar; E.M. Waisman; John L. Porter; Patrick K. Rambo; I. C. Smith; S. V. Lebedev; J. P. Chittenden; D.E. Bliss; T. J. Nash; Gordon Andrew Chandler; Bedros Afeyan; E. P. Yu; Robert B. Campbell; R. G. Adams; D.L. Hanson; T.A. Mehlhorn; M. K. Matzen
Over the last several years, rapid progress has been made evaluating the double-z-pinch indirect-drive, inertial confinement fusion (ICF) high-yield target concept (Hammer et al 1999 Phys. Plasmas 6 2129). We have demonstrated efficient coupling of radiation from two wire-array-driven primary hohlraums to a secondary hohlraum that is large enough to drive a high yield ICF capsule. The secondary hohlraum is irradiated from two sides by z-pinches to produce low odd-mode radiation asymmetry. This double-pinch source is driven from a single electrical power feed (Cuneo et al 2002 Phys. Rev. Lett. 88 215004) on the 20 MA Z accelerator. The double z-pinch has imploded ICF capsules with even-mode radiation symmetry of 3.1 ± 1.4% and to high capsule radial convergence ratios of 14–21 (Bennett et al 2002 Phys. Rev. Lett. 89 245002; Bennett et al 2003 Phys. Plasmas 10 3717; Vesey et al 2003 Phys. Plasmas 10 1854). Advances in wire-array physics at 20 MA are improving our understanding of z-pinch power scaling with increasing drive current. Techniques for shaping the z-pinch radiation pulse necessary for low adiabat capsule compression have also been demonstrated.
IEEE Transactions on Plasma Science | 2012
Michael Edward Cuneo; Mark Herrmann; Daniel Brian Sinars; Stephen A. Slutz; W. A. Stygar; Roger Alan Vesey; A. B. Sefkow; Gregory A. Rochau; Gordon Andrew Chandler; J. E. Bailey; John L. Porter; R. D. McBride; D. C. Rovang; M.G. Mazarakis; E. P. Yu; Derek C. Lamppa; Kyle Peterson; C. Nakhleh; Stephanie B. Hansen; A. J. Lopez; M. E. Savage; Christopher A. Jennings; M. R. Martin; R.W. Lemke; Briggs Atherton; I. C. Smith; P. K. Rambo; M. Jones; M.R. Lopez; P. J. Christenson
High current pulsed-power generators efficiently store and deliver magnetic energy to z-pinch targets. We review applications of magnetically driven implosions (MDIs) to inertial confinement fusion. Previous research on MDIs of wire-array z-pinches for radiation-driven indirect-drive target designs is summarized. Indirect-drive designs are compared with new targets that are imploded by direct application of magnetic pressure produced by the pulsed-power current pulse. We describe target design elements such as larger absorbed energy, magnetized and pre-heated fuel, and cryogenic fuel layers that may relax fusion requirements. These elements are embodied in the magnetized liner inertial fusion (MagLIF) concept [Slutz “Pulsed-power-driven cylindrical liner implosions of laser pre-heated fuel magnetized with an axial field,” Phys. Plasmas, 17, 056303 (2010), and Stephen A. Slutz and Roger A. Vesey, “High-Gain Magnetized Inertial Fusion,” Phys. Rev. Lett., 108, 025003 (2012)]. MagLIF is in the class of magneto-inertial fusion targets. In MagLIF, the large drive currents produce an azimuthal magnetic field that compresses cylindrical liners containing pre-heated and axially pre-magnetized fusion fuel. Scientific breakeven may be achievable on the Z facility with this concept. Simulations of MagLIF with deuterium-tritium fuel indicate that the fusion energy yield can exceed the energy invested in heating the fuel at a peak drive current of about 27 MA. Scientific breakeven does not require alpha particle self-heating and is therefore not equivalent to ignition. Capabilities to perform these experiments will be developed on Z starting in 2013. These simulations and predictions must be validated against a series of experiments over the next five years. Near-term experiments are planned at drive currents of 16 MA with D2 fuel. MagLIF increases the efficiency of coupling energy (=target absorbed energy/driver stored energy) to targets by 10-150X relative to indirect-drive targets. MagLIF also increases the absolute energy absorbed by the target by 10-50X relative to indirect-drive targets. These increases could lead to higher fusion gains and yields. Single-shot high yields are of great utility to national security missions. Higher efficiency and higher gains may also translate into more compelling (lower cost and complexity) fusion reactor designs. We will discuss the broad goals of the emerging research on the MagLIF concept and identify some of the challenges. We will also summarize advances in pulsed-power technology and pulsed-power driver architectures that double the efficiency of the driver.
Physics of Plasmas | 2007
E. P. Yu; B.V. Oliver; Daniel Brian Sinars; T.A. Mehlhorn; M. E. Cuneo; P. Sasorov; M. G. Haines; S. V. Lebedev
The mass ablation phase of a wire-array Z pinch is investigated using steady-state (r,θ) simulations. By identifying the dominant physical mechanisms governing the ablation process, a simple scaling relation is derived for the mass ablation rate m with drive current I, in the case where radiation is the primary energy transport mechanism to the wire core. In order to investigate the dependence of m on wire core size, a simplified analytical model is developed involving a wire core placed in a heat bath and ablating due to radiation. Results of the model, simulation, and experiment are compared.
Physics of Plasmas | 2004
J. P. Chittenden; S. V. Lebedev; B.V. Oliver; E. P. Yu; Michael Edward Cuneo
The hypothesis that wire array Z-pinch radiation sources can be represented as an ablating mass source embedded within a Lorentz force field is examined and the effects that this has upon the trajectory and spatial structure of the ensuing implosion are studied. Two-dimensional (2D) resistive magnetohydrodynamic (MHD) simulations of the ablating core regions and of the array cross-section indicate that the core ablation rate is determined by force balance at the ablation surface. This implies a weak dependence of the ablation velocity (the ratio of the magnitude of the Lorentz force to the mass ablation rate) on the array parameters (current, radius, mass, etc.). In the case of a constant ablation rate, the radial profiles in the flow region between the wires and the axis are found to converge to a set of time independent equilibria. These profiles represent a unique solution to the ideal MHD equations for super-Alfvenic flow in cylindrical geometry. Comparisons of simulated implosion trajectories with ex...
Physics of Plasmas | 2008
E. P. Yu; M. E. Cuneo; Michael P. Desjarlais; R.W. Lemke; Daniel Brian Sinars; Thomas A. Haill; E.M. Waisman; Guy R. Bennett; Christopher A. Jennings; T.A. Mehlhorn; T. A. Brunner; Heath L. Hanshaw; John L. Porter; W. A. Stygar; L. I. Rudakov
The implosion phase of a wire-array Z pinch is investigated using three-dimensional (3D) simulations, which model the mass ablation phase and its associated axial instability using a mass injection boundary condition. The physical mechanisms driving the trailing mass network are explored, and it is found that in 3D the current paths though the trailing mass can reduce bubble growth on the imploding plasma sheath, relative to the 2D (r,z) equivalent. Comparison between the simulations and a high quality set of experimental radiographs is presented.
Physics of Plasmas | 2006
Daniel Brian Sinars; M. E. Cuneo; E. P. Yu; S. V. Lebedev; Kyle Robert Cochrane; B. Jones; J. J. MacFarlane; T.A. Mehlhorn; John L. Porter; David Franklin Wenger
Comparisons of 20mm diameter, 300-wire tungsten arrays with different initial wire sizes were made on the 20MA Sandia Z facility. Radiographic measurements of each wire array, taken at the same point in the current during the wire ablation stage, show systematic differences. A detailed comparison of the radiography and self-emission data with simulations and analytic models suggests that a variation in the mass ablation rate with wire size may be responsible.
Physical Review Letters | 2016
Thomas James Awe; Kyle Peterson; E. P. Yu; R. D. McBride; Daniel Brian Sinars; M. R. Gomez; Christopher A. Jennings; M. R. Martin; S. E. Rosenthal; D. G. Schroen; Adam B Sefkow; Stephen A. Slutz; Kurt Tomlinson; Roger Alan Vesey
Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. The inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130 μm over the 4.0 mm axial height captured by the radiograph.