Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Pappas is active.

Publication


Featured researches published by E. Pappas.


Physics in Medicine and Biology | 2001

Narrow stereotactic beam profile measurements using N-vinylpyrrolidone based polymer gels and magnetic resonance imaging

E. Pappas; I. Seimenis; A. Angelopoulos; P Georgolopoulou; M Kamariotaki-Paparigopoulou; Thomas G. Maris; L. Sakelliou; P. Sandilos; L Vlachos

In this work, polymer gel-MRI dosimetry (using VIPAR gels), radiographic film and a PinPoint ion chamber were used for profile measurements of 6 MV x-ray stereotactic beams of 5 and 10 mm diameter. The VIPAR gel-MRI method exhibited a linear dose response up to 32 Gy. VIPAR gels were found to resolve the penumbra region quite accurately, provided that the in-plane image resolution of the related T2-map is adequate (< or = 0.53 mm). T2-map slice thickness had no significant effect on beam profile data. VIPAR measurements performed with a spatial resolution of 0.13 mm provided penumbra widths (80%-20% distance) of 1.34 and 1.70 mm for the 5 and 10 mm cones respectively. These widths were found to be significantly smaller than those obtained with the film (2.23 mm for the 5 mm cone, 2.45 mm for the 10 mm cone) and PinPoint (2.25 mm for the 5 mm cone, 2.52 mm for the 10 mm cone) methods. Regarding relative depth dose measurements, good correlation between VIPAR gel and PinPoint data was observed. In conclusion, polymer gel-MRI dosimetry can provide relatively accurate profile data for very small beams used in stereotactic radiosurgery since it can overcome, to some extent, the problems related to the finite size of conventional detectors.


Physics in Medicine and Biology | 2001

Wide dynamic dose range of VIPAR polymer gel dosimetry

P. Kipouros; E. Pappas; P. Baras; D Hatzipanayoti; P. Karaiskos; L. Sakelliou; P. Sandilos; I. Seimenis

In this work the extent of the linear dose response and the dynamic dose range of N-vinylpyrrolidone-argon based (VIPAR) polymer gels were investigated. VIPAR gels were irradiated using a 6 MV linear accelerator up to 60 Gy and a Nucletron microSelectron 192Ir HDR brachytherapy source to much higher doses to cover a dose range of two orders of magnitude. They were then MR scanned at 1.5 T to obtain T2-maps. VIPAR gel measurements obtained from the two irradiation regimes were calibrated against ion chamber measurements and dose calculations derived using the AAPM TG-43 protocol respectively. A satisfying agreement between the calibration results derived using the 6 MV x-rays and the 192Ir source was found for doses up to 60 Gy, implying that the response of the VIPAR gels is independent of photon energy and dose rate. A linear R2 dose response up to approximately 40 Gy and a dynamic dose range up to at least approximately 250 Gy were observed. VIPAR gel dose measurements derived using the monoexponentially fitted brachytherapy calibration data were found to be quite accurate.


Medical Physics | 2005

Relative output factor measurements of a 5 mm diameter radiosurgical photon beam using polymer gel dosimetry

E. Pappas; L. Petrokokkinos; A. Angelopoulos; Thomas G. Maris; Marek Kozicki; I. Dalezios; Vassilis Kouloulias

Besides the fine spatial resolution inherent in polymer gel-magnetic resonance imaging (MRI) dosimetry, the method also features the potential for multiple measurements of varying sensitive volume in a single experiment by integrating results in MRI voxels of finite dimensions (i.e., in plane resolution by slice thickness). This work exploits this feature of polymer gel dosimetry to propose an experimental technique for relative output factor (OF) measurements of small radiosurgical beams. Two gel vials were irradiated with a 5 and 30 mm diameter 6 MV radiosurgery beam and MR scanned with the same slice thickness and three different in plane resolutions. Using this experimental data set, 5 mm OF measurements with the PinPoint ion chamber are simulated by integrating results over a sensitive volume equal to that of the chamber. Results are found in agreement within experimental uncertainties with actual PinPoint measurements verifying the validity of the proposed experimental procedure. The polymer gel data set is subsequently utilized for OF measurements of the 5 mm beam with varying sensitive volume to discuss the magnitude of detector volume averaging effects. Seeking to correct for volume averaging, results are extrapolated to zero sensitive volume yielding a 5 mm OF measurement of (0.66±5%). This result compares reasonably with corresponding ionometric and radiographic film measurements of this work and corresponding, limited, data in the literature. Overall, results suggest that polymer gel dosimetry coupled with the proposed experimental procedure helps overcome not only tissue-equivalence and beam perturbation implications but also volume averaging and positioning uncertainties which constitute the main drawback in small radiosurgical beam dosimetry.


Medical Physics | 2002

Polymer gel dosimetry using a three‐dimensional MRI acquisition technique

Panagiotis Baras; I Seimenis; P. Kipouros; P. Papagiannis; A. Angelopoulos; L. Sakelliou; E. Pappas; Dimos Baltas; P. Karaiskos; P. Sandilos; Lambros Vlachos

In this work, three-dimensional (3-D) MRI techniques are employed in N-Vinylpyrrolidone-Argon-(VIPAR-) based polymer gel dosimetry. VIPAR gels were irradiated using a Nucletron microSelection 192Ir HDR brachytherapy remote afterloading system with single source dwell position and intravascular brachytherapy irradiation protocols. A single VIPAR gel and a single irradiation are adequate to obtain the full calibration curve needed. The 3-D dose distributions obtained with the 3-D MRI method were found to be in good agreement with the corresponding Monte Carlo calculations, for brachytherapy and intravascular irradiations. The method allows the reconstruction of isodose contours over any plane, with increased spatial resolution and accuracy following a single MR acquisition. VIPAR gel measurements using a 3-D MRI readout technique can be of particular use in the experimental dosimetry of brachytherapy sources, as well as for dose verification purposes when complex irradiation regimes and three-dimensional dose gradients are investigated.


Journal of Applied Clinical Medical Physics | 2015

BrachyGuide: a brachytherapy-dedicated DICOM RT viewer and interface to Monte Carlo simulation software

Evaggelos Pantelis; Vassiliki Peppa; Vasileios Lahanas; E. Pappas; P. Papagiannis

This work presents BrachyGuide, a brachytherapy‐dedicated software tool for the automatic preparation of input files for Monte Carlo simulation from treatment plans exported in DICOM RT format, and results of calculations performed for its benchmarking. Three plans were prepared using two computational models, the image series of a water sphere and a multicatheter breast brachytherapy patient, for each of two commercially available treatment planning systems: BrachyVision and Oncentra Brachy. One plan involved a single source dwell position of an 192Ir HDR source (VS2000 or mHDR‐v2) at the center of the water sphere using the TG43 algorithm, and the other two corresponded to the TG43 and advanced dose calculation algorithm for the multicatheter breast brachytherapy patient. Monte Carlo input files were prepared using BrachyGuide and simulations were performed with MCNP v.6.1. For the TG43 patient plans, the Monte Carlo computational model was manually edited in the prepared input files to resemble TG43 dosimetry assumptions. Hence all DICOM RT dose exports were equivalent to corresponding simulation results and their comparison was used for benchmarking the use of BrachyGuide. Monte Carlo simulation results and corresponding DICOM RT dose exports agree within type A uncertainties in the majority of points in the computational models. Treatment planning system, algorithm, and source specific differences greater than type A uncertainties were also observed, but these were explained by treatment planning system‐related issues and other sources of type B uncertainty. These differences have to be taken into account in commissioning procedures of brachytherapy dosimetry algorithms. BrachyGuide is accurate and effective for use in the preparation of commissioning tests for new brachytherapy dosimetry algorithms as a user‐oriented commissioning tool and the expedition of retrospective patient cohort studies of dosimetry planning. PACS numbers: 87.53.Bn, 87.53.Jw, 87.55.D‐, 87.55.Qr, 87.55.km, 87.55.K‐


Physics in Medicine and Biology | 2003

Evaluation of the performance of VIPAR polymer gels using a variety of x-ray and electron beams

E. Pappas; A. Angelopoulos; P. Kipouros; Lambros Vlachos; S Xenofos; I Seimenis

The aim of this investigation was the evaluation of the usefulness of N-vinyl pyrrolidone argon (VIPAR) polymer gel dosimetry for relative dose measurements using the majority of types and energies of radiation beams used in clinical practice. For this reason, VIPAR polymer gels were irradiated with the following beams: 6 and 23 MV photons (maximum dose: 15 Gy) and 6, 9, 12, 15, 18 and 21 MeV electrons (90% dose: 15 Gy). Using 6 MV x-rays, a linear gel dose response was verified for doses up to 20 Gy. Assuming linearity of response for the rest of the photon and electron beams used in this study, percentage depth dose measurements were derived. For all beams used and the range of relative doses studied, a satisfying agreement was observed between percentage depth dose measurements performed using the VIPAR gel-MRI method and an ion chamber, validating the assumption that a linear gel dose response holds for all photon and electron beams studied. VIPAR gels, therefore, can be used for relative dose distribution measurements using photons or electrons of any typical energy used in external radiotherapy applications. It is also demonstrated that two-dimensional dose distribution measurements through an irradiated (9 MeV electrons, 3 cm x 3 cm cone) VIPAR gel volume can be easily obtained.


Physics in Medicine and Biology | 2016

Characterization of system-related geometric distortions in MR images employed in Gamma Knife radiosurgery applications

E. Pappas; Ioannis Seimenis; A. Moutsatsos; E. Georgiou; P Nomikos; P. Karaiskos

This work provides characterization of system-related geometric distortions present in MRIs used in Gamma Knife (GK) stereotactic radiosurgery (SRS) treatment planning. A custom-made phantom, compatible with the Leksell stereotactic frame model G and encompassing 947 control points (CPs), was utilized. MR images were obtained with and without the frame, thus allowing discrimination of frame-induced distortions. In the absence of the frame and following compensation for field inhomogeneities, measured average CP disposition owing to gradient nonlinearities was 0.53 mm. In presence of the frame, contrarily, detected distortion was greatly increased (up to about 5 mm) in the vicinity of the frame base due to eddy currents induced in the closed loop of its aluminum material. Frame-related distortion was obliterated at approximately 90 mm from the frame base. Although the region with the maximum observed distortion may not lie within the GK treatable volume, the presence of the frame results in distortion of the order of 1.5 mm at a 7 cm distance from the center of the Leksell space. Additionally, severe distortions observed outside the treatable volume could possibly impinge on the delivery accuracy mainly by adversely affecting the registration process (e.g. the position of the lower part of the N-shaped fiducials used to define the stereotactic space may be miss-registered). Images acquired with a modified version of the frame developed by replacing its front side with an acrylic bar, thus interrupting the closed aluminum loop and reducing the induced eddy currents, were shown to benefit from relatively reduced distortion. System-related distortion was also identified in patient MR images. Using corresponding CT angiography images as a reference, an offset of 1.1 mm was detected for two vessels lying in close proximity to the frame base, while excellent spatial agreement was observed for a vessel far apart from the frame base.


Brachytherapy | 2016

A user-oriented procedure for the commissioning and quality assurance testing of treatment planning system dosimetry in high-dose-rate brachytherapy

Vasiliki Peppa; Evaggelos Pantelis; E. Pappas; Vasileios Lahanas; Constantinos Loukas; P. Papagiannis

PURPOSE To develop a user-oriented procedure for testing treatment planning system (TPS) dosimetry in high-dose-rate brachytherapy, with particular focus to TPSs using model-based dose calculation algorithms (MBDCAs). METHODS AND MATERIALS Identical plans were prepared for three computational models using two commercially available systems and the same (192)Ir source. Reference dose distributions were obtained for each plan using the MCNP v.6.1 Monte Carlo (MC) simulation code with input files prepared via automatic parsing of plan information using a custom software tool. The same tool was used for the comparison of reference dose distributions with corresponding MBDCA exports. RESULTS The single source test case yielded differences due to the MBDCA spatial discretization settings. These affect points at relatively increased distance from the source, and they are abated in test cases with multiple source dwells. Differences beyond MC Type A uncertainty were also observed very close to the source(s), close to the test geometry boundaries, and within heterogeneities. Both MBDCAs studied were found equivalent to MC within 5 cm from the target volume for a clinical breast brachytherapy test case. These are in agreement with previous findings of MBDCA benchmarking in the literature. CONCLUSIONS The data and the tools presented in this work, that are freely available via the web, can serve as a benchmark for advanced clinical users developing their own tests, a complete commissioning procedure for new adopters of currently available TPSs using MBDCAs, a quality assurance testing tool for future updates of already installed TPSs, or as an admission prerequisite in multicentric clinical trials.


Radiotherapy and Oncology | 2016

On the impact of improved dosimetric accuracy on head and neck high dose rate brachytherapy

Vasiliki Peppa; E. Pappas; Tibor Major; Zoltán Takácsi-Nagy; Evaggelos Pantelis; P. Papagiannis

PURPOSE To study the effect of finite patient dimensions and tissue heterogeneities in head and neck high dose rate brachytherapy. METHODS AND MATERIALS The current practice of TG-43 dosimetry was compared to patient specific dosimetry obtained using Monte Carlo simulation for a sample of 22 patient plans. The dose distributions were compared in terms of percentage dose differences as well as differences in dose volume histogram and radiobiological indices for the target and organs at risk (mandible, parotids, skin, and spinal cord). RESULTS Noticeable percentage differences exist between TG-43 and patient specific dosimetry, mainly at low dose points. Expressed as fractions of the planning aim dose, percentage differences are within 2% with a general TG-43 overestimation except for the spine. These differences are consistent resulting in statistically significant differences of dose volume histogram and radiobiology indices. Absolute differences of these indices are however small to warrant clinical importance in terms of tumor control or complication probabilities. CONCLUSIONS The introduction of dosimetry methods characterized by improved accuracy is a valuable advancement. It does not appear however to influence dose prescription or call for amendment of clinical recommendations for the mobile tongue, base of tongue, and floor of mouth patient cohort of this study.


Physics in Medicine and Biology | 2017

On the experimental validation of model-based dose calculation algorithms for 192Ir HDR brachytherapy treatment planning

E. Pappas; Emmanouil Zoros; A. Moutsatsos; Vasiliki Peppa; K. Zourari; P. Karaiskos; P. Papagiannis

There is an acknowledged need for the design and implementation of physical phantoms appropriate for the experimental validation of model-based dose calculation algorithms (MBDCA) introduced recently in 192Ir brachytherapy treatment planning systems (TPS), and this work investigates whether it can be met. A PMMA phantom was prepared to accommodate material inhomogeneities (air and Teflon), four plastic brachytherapy catheters, as well as 84 LiF TLD dosimeters (MTS-100M 1  ×  1  ×  1 mm3 microcubes), two radiochromic films (Gafchromic EBT3) and a plastic 3D dosimeter (PRESAGE). An irradiation plan consisting of 53 source dwell positions was prepared on phantom CT images using a commercially available TPS and taking into account the calibration dose range of each detector. Irradiation was performed using an 192Ir high dose rate (HDR) source. Dose to medium in medium, [Formula: see text], was calculated using the MBDCA option of the same TPS as well as Monte Carlo (MC) simulation with the MCNP code and a benchmarked methodology. Measured and calculated dose distributions were spatially registered and compared. The total standard (k  =  1) spatial uncertainties for TLD, film and PRESAGE were: 0.71, 1.58 and 2.55 mm. Corresponding percentage total dosimetric uncertainties were: 5.4-6.4, 2.5-6.4 and 4.85, owing mainly to the absorbed dose sensitivity correction and the relative energy dependence correction (position dependent) for TLD, the film sensitivity calibration (dose dependent) and the dependencies of PRESAGE sensitivity. Results imply a LiF over-response due to a relative intrinsic energy dependence between 192Ir and megavoltage calibration energies, and a dose rate dependence of PRESAGE sensitivity at low dose rates (<1 Gy min-1). Calculations were experimentally validated within uncertainties except for MBDCA results for points in the phantom periphery and dose levels  <20%. Experimental MBDCA validation is laborious, yet feasible. Further work is required for the full characterization of dosimeter response for 192Ir and the reduction of experimental uncertainties.

Collaboration


Dive into the E. Pappas's collaboration.

Top Co-Authors

Avatar

P. Karaiskos

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

P. Papagiannis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

A. Moutsatsos

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

E. Pantelis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Vasiliki Peppa

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

E. Georgiou

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Emmanouil Zoros

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Evaggelos Pantelis

National and Kapodistrian University of Athens

View shared research outputs
Top Co-Authors

Avatar

Ioannis Seimenis

Democritus University of Thrace

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge