Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Perez-Montero is active.

Publication


Featured researches published by E. Perez-Montero.


Nature | 2008

A test of the nature of cosmic acceleration using galaxy redshift distortions

L. Guzzo; M. Pierleoni; B. Meneux; E. Branchini; O. Le Fèvre; C. Marinoni; B. Garilli; Jeremy Blaizot; G. De Lucia; A. Pollo; H. J. McCracken; D. Bottini; V. Le Brun; D. Maccagni; J. P. Picat; R. Scaramella; M. Scodeggio; L. Tresse; G. Vettolani; A. Zanichelli; C. Adami; S. Arnouts; S. Bardelli; M. Bolzonella; A. Bongiorno; A. Cappi; S. Charlot; P. Ciliegi; T. Contini; O. Cucciati

Observations of distant supernovae indicate that the Universe is now in a phase of accelerated expansion the physical cause of which is a mystery. Formally, this requires the inclusion of a term acting as a negative pressure in the equations of cosmic expansion, accounting for about 75 per cent of the total energy density in the Universe. The simplest option for this ‘dark energy’ corresponds to a ‘cosmological constant’, perhaps related to the quantum vacuum energy. Physically viable alternatives invoke either the presence of a scalar field with an evolving equation of state, or extensions of general relativity involving higher-order curvature terms or extra dimensions. Although they produce similar expansion rates, different models predict measurable differences in the growth rate of large-scale structure with cosmic time. A fingerprint of this growth is provided by coherent galaxy motions, which introduce a radial anisotropy in the clustering pattern reconstructed by galaxy redshift surveys. Here we report a measurement of this effect at a redshift of 0.8. Using a new survey of more than 10,000 faint galaxies, we measure the anisotropy parameter β = 0.70 ± 0.26, which corresponds to a growth rate of structure at that time of f = 0.91 ± 0.36. This is consistent with the standard cosmological-constant model with low matter density and flat geometry, although the error bars are still too large to distinguish among alternative origins for the accelerated expansion. The correct origin could be determined with a further factor-of-ten increase in the sampled volume at similar redshift.


Astrophysical Journal Supplement Series | 2009

THE zCOSMOS 10k-BRIGHT SPECTROSCOPIC SAMPLE*

S. J. Lilly; Vincent Le Brun; C. Maier; V. Mainieri; Marco Mignoli; M. Scodeggio; Gianni Zamorani; Marcella Carollo; T. Contini; Jean-Paul Kneib; Olivier Le Fevre; A. Renzini; S. Bardelli; M. Bolzonella; A. Bongiorno; Karina Caputi; G. Coppa; O. Cucciati; Sylvain de la Torre; Loic de Ravel; P. Franzetti; Bianca Garilli; A. Iovino; P. Kampczyk; K. Kovac; C. Knobel; F. Lamareille; Jean-Francois Le Borgne; R. Pello; Yingjie Peng

We present spectroscopic redshifts of a large sample of galaxies with I_(AB) < 22.5 in the COSMOS field, measured from spectra of 10,644 objects that have been obtained in the first two years of observations in the zCOSMOS-bright redshift survey. These include a statistically complete subset of 10,109 objects. The average accuracy of individual redshifts is 110 km s^(–1), independent of redshift. The reliability of individual redshifts is described by a Confidence Class that has been empirically calibrated through repeat spectroscopic observations of over 600 galaxies. There is very good agreement between spectroscopic and photometric redshifts for the most secure Confidence Classes. For the less secure Confidence Classes, there is a good correspondence between the fraction of objects with a consistent photometric redshift and the spectroscopic repeatability, suggesting that the photometric redshifts can be used to indicate which of the less secure spectroscopic redshifts are likely right and which are probably wrong, and to give an indication of the nature of objects for which we failed to determine a redshift. Using this approach, we can construct a spectroscopic sample that is 99% reliable and which is 88% complete in the sample as a whole, and 95% complete in the redshift range 0.5 < z < 0.8. The luminosity and mass completeness levels of the zCOSMOS-bright sample of galaxies is also discussed.


Journal of Cosmology and Astroparticle Physics | 2012

Improved constraints on the expansion rate of the Universe up to z ∼ 1.1 from the spectroscopic evolution of cosmic chronometers

M. Moresco; A. Cimatti; Raul Jimenez; L. Pozzetti; G. Zamorani; M. Bolzonella; James Dunlop; F. Lamareille; M. Mignoli; H. Pearce; P. Rosati; D. Stern; Licia Verde; E. Zucca; C. M. Carollo; T. Contini; Jean-Paul Kneib; O. Le Fèvre; S. J. Lilly; V. Mainieri; A. Renzini; M. Scodeggio; I. Balestra; R. Gobat; Ross J. McLure; S. Bardelli; A. Bongiorno; Karina Caputi; O. Cucciati; S. de la Torre

We present new improved constraints on the Hubble parameter H(z) in the redshift range 0.15 \textless z \textless 1.1, obtained from the differential spectroscopic evolution of early-type galaxies as a function of redshift. We extract a large sample of early-type galaxies ( 11000) from several spectroscopic surveys, spanning almost 8 billion years of cosmic lookback time (0.15 \textless z \textless 1.42). We select the most massive, red elliptical galaxies, passively evolving and without signature of ongoing star formation. Those galaxies can be used as standard cosmic chronometers, as firstly proposed by Jimenez & Loeb (2002), whose (life! Nit age evolution as a function of cosmic time directly probes H (z). We analyze the 4000 angstrom break (D4000) as a function of redshift, use stellar population synthesis models to theoretically calibrate the dependence of the differential age evolution on the differential D4000, and estimate the Hubble parameter taking into account both statistical and systematical errors. We provide 8 new measurements of H(z) (see table 4), and determine its change in H(z) to a precision of 5-12% mapping homogeneously the redshift range up to z 1.1; for the first time, we place a constraint on 11(z) at z not equal 0 with a precision comparable with the one achieved for the Hubble constant (about 5-6% at z similar to 0.2), and covered a redshift range (0.5 \textless z \textless 0.8) which is crucial to distinguish many different quintessence cosmologies. These measurements have been tested to best match a ACDM model, clearly providing a statistically robust indication that the Universe is undergoing an accelerated expansion. This method shows the potentiality to open a new avenue in constrain a variety of alternative cosmologies, especially when future surveys (e.g. Euclid) will open the possibility to extend it up to z similar to 2.


The Astrophysical Journal | 2011

Dissecting photometric redshift for active galactic nucleus using XMM- and Chandra-COSMOS samples

M. Salvato; O. Ilbert; Guenther Hasinger; F. Civano; G. Zamorani; M. Brusa; M. Elvis; C. Vignali; H. Aussel; A. Comastri; F. Fiore; E. Le Floc'h; V. Mainieri; S. Bardelli; M. Bolzonella; A. Bongiorno; P. Capak; Karina Caputi; N. Cappelluti; C. M. Carollo; T. Contini; B. Garilli; A. Iovino; S. Fotopoulou; Antonella Fruscione; R. Gilli; C. Halliday; Jean-Paul Kneib; Y. Kakazu; J. Kartaltepe

In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σ_(Δz/(1+z(spec))~0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg^2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H_(AB) = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.


Astronomy and Astrophysics | 2010

Tracking the impact of environment on the galaxy stellar mass function up to z ~ 1 in the 10 k zCOSMOS sample

M. Bolzonella; K. Kovac; L. Pozzetti; E. Zucca; O. Cucciati; S. J. Lilly; Y. Peng; A. Iovino; G. Zamorani; D. Vergani; L. Tasca; F. Lamareille; P. Oesch; Karina Caputi; P. Kampczyk; S. Bardelli; C. Maier; U. Abbas; C. Knobel; M. Scodeggio; C. M. Carollo; T. Contini; Jean-Paul Kneib; O. Le Fèvre; V. Mainieri; A. Renzini; A. Bongiorno; G. Coppa; S. de la Torre; L. de Ravel

We study the impact of the environment on the evolution of galaxies in the zCOSMOS 10 k sample in the redshift range 0.1 ≤ z ≤ 1.0 over an area of ~1.5 deg^2. The considered sample of secure spectroscopic redshifts contains about 8500 galaxies, with their stellar masses estimated by SED fitting of the multiwavelength optical to near-infrared (NIR) photometry. The evolution of the galaxy stellar mass function (GSMF) in high and low density regions provides a tool to study the mass assembly evolution in different environments; moreover, the contributions to the GSMF from different galaxy types, as defined by their SEDs and their morphologies, can be quantified. At redshift z ~ 1, the GSMF is only slightly dependent on environment, but at lower redshifts the shapes of the GSMFs in high- and low-density environments become extremely different, with high density regions exhibiting a marked bimodality, not reproducible by a single Schechter function. As a result of this analysis, we infer that galaxy evolution depends on both the stellar mass and the environment, the latter setting the probability of a galaxy to have a given mass: all the galaxy properties related to the stellar mass show a dependence on environment, reflecting the difference observed in the mass functions. The shapes of the GSMFs of early- and late-type galaxies are almost identical for the extremes of the density contrast we consider, ranging from isolated galaxies to rich group members. The evolution toward z = 0 of the transition mass M_(cross), i.e., the mass at which the early- and late-type GSMFs match each other, is more rapid in high density environments, because of a difference in the evolution of the normalisation of GSMFs compared to the total one in the considered environment. The same result is found by studying the relative contributions of different galaxy types, implying that there is a more rapid evolution in overdense regions, in particular for intermediate stellar masses. The rate of evolution is different for sets of galaxy types divided on the basis of their SEDs or their morphologies, tentatively suggesting that the migration from the blue cloud to the red sequence occurs on a shorter timescale than the transformation from disc-like morphologies to ellipticals. Our analysis suggests that environmental mechanisms of galaxy transformation start to be more effective at z < 1. The comparison of the observed GSMFs to the same quantities derived from a set of mock catalogues based on semi-analytical models shows disagreement, in both low and high density environments: in particular, blue galaxies in sparse environments are overproduced in the semi-analytical models at intermediate and high masses, because of a deficit of star formation suppression, while at z < 0.5 an excess of red galaxies is present in dense environments at intermediate and low masses, because of the overquenching of satellites.


Monthly Notices of the Royal Astronomical Society | 2009

The impact of the nitrogen-to-oxygen ratio on ionized nebula diagnostics based on [N ii] emission lines

E. Perez-Montero; T. Contini

We study the relation between nitrogen and oxygen abundances as a function of metallicity for a sample of emission-line objects for which a direct measurement of the metallicity has been possible. This sample is representative of the very different conditions in ionization and chemical enrichment that we can find in the Universe. We first construct the N/O versus O/H ratio diagram, and discuss its large dispersion at all metallicity regimes. Using the same sample and a large grid of photoionization models covering very different values of the N/O ratio, we then study the most widely used strong-line calibrators of metallicity based on [N II] emission lines, such as N2 and 03N2. We demonstrate that these parameters underestimate the metallicity at low N/O ratios and vice versa. We also investigate the effect of the N/O ratio on different diagnostic diagrams used to discriminate narrow-line active galactic nuclei from star-forming regions, such as the [O III ]/Hβ versus [N II ]/Hα, and show that a large fraction of the galaxies catalogued as composite in this diagram can be, in fact, star-forming galaxies with a high value of the N/O ratio. Finally, using strong-line methods sensitive to the N/O abundance ratio, like N202 and N2S2, we investigate the relation between this ratio and the stellar mass for the galaxies of the Sloan Digital Sky Survey. We find, as in the case of the mass-metallicity relation, a correlation between these two quantities and a flattening of the relation for the most massive galaxies, which could be a consequence of the enhancement of the dispersion of N/O ratio in the high-metallicity regime.


Astronomy and Astrophysics | 2009

The VIMOS VLT Deep Survey - Evolution of the major merger rate since z ~ 1 from spectroscopically confirmed galaxy pairs

L. de Ravel; O. Le Fèvre; L. Tresse; D. Bottini; B. Garilli; V. Le Brun; D. Maccagni; R. Scaramella; M. Scodeggio; G. Vettolani; A. Zanichelli; C. Adami; Stephane Arnouts; S. Bardelli; M. Bolzonella; A. Cappi; S. Charlot; P. Ciliegi; T. Contini; Sylvie Foucaud; P. Franzetti; I. Gavignaud; L. Guzzo; O. Ilbert; A. Iovino; F. Lamareille; H. J. McCracken; B. Marano; Christian Marinoni; A. Mazure

Context: The rate at which galaxies grow via successive mergers is a key element in understanding the main phases of galaxy evolution. Aims: We measure the evolution of the fraction of galaxies in pairs and the merging rate since redshift z 1 assuming a (H0 = 70 km s-1 Mpc-1, ΩM = 0.3 and ΩΛ = 0.7) cosmology. Methods: From the VIMOS VLT Deep Survey we use a sample of 6464 galaxies with I_AB ≤ 24 to identify 314 pairs of galaxies, each member with a secure spectroscopic redshift, which are close in both projected separation and in velocity. Results: We estimate that at z 0.9, 10.9 ± 3.2% of galaxies with MB(z) ≤ -18-Qz (Q = 1.11) are in pairs with separations Δ rp ≤ 20 h-1 kpc, Δ v≤ 500 km s-1, and with Δ MB ≤ 1.5, significantly larger than 3.8 ± 1.7% at z 0.5; thus, the pair fraction evolves as (1 + z)m with m = 4.73 ± 2.01. For bright galaxies with MB(z = 0) ≤ -18.77, the pair fraction is higher and its evolution with redshift is flatter with m = 1.50 ± 0.76, a property also observed for galaxies with increasing stellar masses. Early-type pairs (dry mergers) increase their relative fraction from 3% at z 0.9 to 12% at z 0.5. The star formation rate traced by the rest-frame [OII] EW increases by 26 ± 4% for pairs with the smallest separation rp ≤ 20 h-1 kpc. Following published prescriptions to derive merger timescales, we find that the merger rate of MB(z) ≤ -18-Qz galaxies evolves as N_mg = (4.96 ± 2.07)×10-4×(1 + z)2.20 ± 0.77 mergers Mpc-3 Gyr-1. Conclusions: The merger rate of galaxies with MB(z) ≤ -18-Qz has significantly evolved since z 1 and is strongly dependent on the luminosity or stellar mass of galaxies. The major merger rate increases more rapidly with redshift for galaxies with fainter luminosities or stellar mass, while the evolution of the merger rate for bright or massive galaxies is slower, indicating that the slow evolution reported for the brightest galaxies is not universal. The merger rate is also strongly dependent on the spectral type of galaxies involved. Late-type mergers were more frequent in the past, while early-type mergers are more frequent today, contributing to the rise in the local density of early-type galaxies. About 20% of the stellar mass in present day galaxies with log(M/M{ȯ}) ≥ 9.5 has been accreted through major merging events since z = 1. This indicates that major mergers have contributed significantly to the growth in stellar mass density of bright galaxies over the last half of the life of the Universe. based on observations obtained with the European Southern Observatory Telescopes at the Paranal Observatory, under programs 072.A-0586 and 073.A-0647.


The Astrophysical Journal | 2011

The Impact of Galaxy Interactions on Active Galactic Nucleus Activity in zCOSMOS

J. D. Silverman; P. Kampczyk; Knud Jahnke; R. Andrae; S. J. Lilly; M. Elvis; F. Civano; V. Mainieri; Christian Vignali; G. Zamorani; P. Nair; O. Le Fèvre; L. de Ravel; S. Bardelli; A. Bongiorno; M. Bolzonella; A. Cappi; Karina Caputi; C. M. Carollo; T. Contini; G. Coppa; O. Cucciati; S. de la Torre; P. Franzetti; B. Garilli; C. Halliday; G. Hasinger; A. Iovino; C. Knobel; Anton M. Koekemoer

Close encounters between galaxies are expected to be a viable mechanism, as predicted by numerical simulations, by which accretion onto supermassive black holes can be initiated. To test this scenario, we construct a sample of 562 galaxies (M_* > 2.5 × 10^(10) M_☉) in kinematic pairs over the redshift range 0.25 2 × 10^(42) erg s^(–1)) detected by Chandra. We find a higher fraction of an AGN in galaxies in pairs relative to isolated galaxies of similar stellar mass. Our result is primarily due to an enhancement of AGN activity, by a factor of 1.9 (observed) and 2.6 (intrinsic), for galaxies in pairs of projected separation less than 75 kpc and line-of-sight velocity offset less than 500 km s^(–1). This study demonstrates that close kinematic pairs are conducive environments for black hole growth, either indicating a causal physical connection or an inherent relation, such as, to enhanced star formation. In the Appendix, we describe a method for estimating the intrinsic fractions of galaxies (either in pairs or the field) hosting an AGN with confidence intervals, and an excess fraction in pairs. We estimate that 17.8^(+8.4)_(–7.4)% of all moderate-luminosity AGN activity takes place within galaxies undergoing early stages of interaction that leaves open the question as to what physical processes are responsible for fueling the remaining ~80% that may include late-stage mergers.


Monthly Notices of the Royal Astronomical Society | 2008

Precision photometric redshift calibration for galaxy-galaxy weak lensing

Rachel Mandelbaum; Uros Seljak; Christopher M. Hirata; S. Bardelli; M. Bolzonella; A. Bongiorno; Marcella Carollo; T. Contini; C. E. Cunha; B. Garilli; A. Iovino; P. Kampczyk; Jean-Paul Kneib; C. Knobel; David C. Koo; F. Lamareille; O. Le Fèvre; J.-F. Leborgne; S. J. Lilly; C. Maier; V. Mainieri; M. Mignoli; Jeffrey A. Newman; P. Oesch; E. Perez-Montero; E. Ricciardelli; M. Scodeggio; J. D. Silverman; L. Tasca

Accurate photometric redshifts are among the key requirements for precision weak lensing measurements. Both the large size of the Sloan Digital Sky Survey (SDSS) and the existence of large spectroscopic redshift samples that are flux-limited beyond its depth have made it the optimal data source for developing methods to properly calibrate photometric redshifts for lensing. Here, we focus on galaxy-galaxy lensing in a survey with spectroscopic lens redshifts, as in the SDSS. We develop statistics that quantify the effect of source redshift errors on the lensing calibration and on the weighting scheme, and show how they can be used in the presence of redshift failure and sampling variance. We then demonstrate their use with 2838 source galaxies with spectroscopy from DEEP2 and zCOSMOS, evaluating several public photometric redshift algorithms, in two cases including a full p(z) for each object, and find lensing calibration biases as low as <1 per cent (due to fortuitous cancellation of two types of bias) or as high as 20 per cent for methods in active use (despite the small mean photoz bias of these algorithms). Our work demonstrates that lensing-specific statistics must be used to reliably calibrate the lensing signal, due to asymmetric effects of (frequently non-Gaussian) photoz errors. We also demonstrate that large-scale structure (LSS) can strongly impact the photoz calibration and its error estimation, due to a correlation between the LSS and the photoz errors, and argue that at least two independent degree-scale spectroscopic samples are needed to suppress its effects. Given the size of our spectroscopic sample, we can reduce the galaxy-galaxy lensing calibration error well below current SDSS statistical errors. Based in part on observations undertaken at the European Southern Observatory (ESO) Very Large Telescope (VLT) under Large Programme 175.A-0839. E-mail: [email protected] (RM); [email protected] (US) ? Hubble Fellow.


Astronomy and Astrophysics | 2012

MASSIV: Mass Assembly Survey with SINFONI in VVDS - III. Evidence for positive metallicity gradients in z ~ 1.2 star-forming galaxies

J. Queyrel; T. Contini; Markus Kissler-Patig; B. Epinat; P. Amram; B. Garilli; O. Le Fèvre; J. Moultaka; L. Paioro; L. Tasca; L. Tresse; D. Vergani; C. Lopez-Sanjuan; E. Perez-Montero

Aims. The estimate of radial abundance gradients in high-redshift galaxies allows to constrain their star formation history and their interplay with the surrounding intergalactic medium. Methods. We present VLT/SINFONI integral-field spectroscopy of a first sample of 50 galaxies at z similar to 1.2 in the MASSIV survey. Using the N2 ratio between the [N II]6584 and H alpha rest-frame optical emission lines as a proxy for oxygen abundance in the interstellar medium, we measured the metallicity of the sample galaxies. We developed a tool to extract spectra in annular regions, leading to a spatially resolved estimate of the oxygen abundance in each galaxy. We were able to derive a metallicity gradient for 26 galaxies in our sample and discovered a significant fraction of galaxies with a “positive” gradient. Using a simple chemical evolution model, we derived infall rates of pristine gas onto the disks. Results. Seven galaxies display a positive gradient at a high confidence level. Four out of these are interacting, and one is a chain galaxy. We suggest that interactions might be responsible for shallowing and even inverting the abundance gradient. We also identify two interesting correlations in our sample: a) galaxies with higher gas velocity dispersion have shallower/positive gradients; and b) metal-poor galaxies tend to show a positive gradient, whereas metal-rich ones tend to show a negative one. This last observation can be explained by the infall of metal-poor gas into the center of the disks. We address the question of the origin of this infall under the influence of gas flows triggered by interactions and/or cold gas accretion. All the data published in this paper are publicly available at the time of publication following this link: http://cosmosdb.lambrate.inaf.it/VVDS-SINFONI.

Collaboration


Dive into the E. Perez-Montero's collaboration.

Top Co-Authors

Avatar

T. Contini

University of Toulouse

View shared research outputs
Top Co-Authors

Avatar

O. Le Fèvre

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

V. Mainieri

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge