Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. R. Solano is active.

Publication


Featured researches published by E. R. Solano.


Physics of Plasmas | 2011

H-mode pedestal scaling in DIII-D, ASDEX Upgrade, and JET

M. N. A. Beurskens; T. H. Osborne; P. A. Schneider; E. Wolfrum; L. Frassinetti; R. Groebner; P. Lomas; I. Nunes; S. Saarelma; R. Scannell; P. B. Snyder; D. Zarzoso; I. Balboa; B. Bray; M. Brix; J. Flanagan; C. Giroud; E. Giovannozzi; M. Kempenaars; A. Loarte; E. de la Luna; G. Maddison; C. F. Maggi; D. C. McDonald; R. Pasqualotto; G. Saibene; R. Sartori; E. R. Solano; M. Walsh; L. Zabeo

Multi device pedestal scaling experiments in the DIII-D, ASDEX Upgrade (AUG) and JET tokamaks are presented in order to test two plasma physics pedestal width models. The first model proposes a scaling of the pedestal width Δ/a ρ * 1/2 to ρ * based on the radial extent of the pedestal being set by the point where the linear turbulence growth rate exceeds the ExB velocity. In the multi device experiment where ρ * at the pedestal top was varied by a factor of four while other dimensionless parameters where kept fixed, it has been observed that the temperature pedestal width in real space coordinates scales with machine size, and that therefore the gyroradius scaling suggested by the model is not supported by the experiments. This density pedestal width is not invariant with ρ * which after comparison with a simple neutral fuelling model may be attributed to variations in the neutral fuelling patterns. The second model, EPED1, is based on kinetic ballooning modes setting the limit of the radial extent of the pedestal region and leads to Δ βp 1/2 . All three devices show a scaling of the pedestal width in normalised poloidal flux as Δ βp 1/2 , as described by the kinetic ballooning model, however on JET and AUG this could not be distinguished from an interpretation where the pedestal is fixed in real space. Pedestal data from all three devices have been compared with the predictive pedestal model EPED1 and the model produces pedestal height values that match the experimental data well.


Nuclear Fusion | 2014

Global and pedestal confinement in JET with a Be/W metallic wall

M. N. A. Beurskens; L. Frassinetti; C. Challis; C. Giroud; S. Saarelma; B. Alper; C. Angioni; P. Bilkova; C. Bourdelle; S. Brezinsek; P. Buratti; G. Calabrò; T. Eich; J. Flanagan; E. Giovannozzi; M. Groth; J. Hobirk; E. Joffrin; M. Leyland; P. Lomas; E. de la Luna; M. Kempenaars; G. Maddison; C. F. Maggi; P. Mantica; M. Maslov; G. F. Matthews; M.-L. Mayoral; R. Neu; I. Nunes

Type I ELMy H-mode operation in JET with the ITER-like Be/W wall (JET-ILW) generally occurs at lower pedestal pressures compared to those with the full carbon wall (JET-C). The pedestal density is similar but the pedestal temperature where type I ELMs occur is reduced and below to the so-called critical type I–type III transition temperature reported in JET-C experiments. Furthermore, the confinement factor H98(y,2) in type I ELMy H-mode baseline plasmas is generally lower in JET-ILW compared to JET-C at low power fractions Ploss/Pthr,08 2, the confinement in JET-ILW hybrid plasmas is similar to that in JET-C. A reduction in pedestal pressure is the main reason for the reduced confinement in JET-ILW baseline ELMy H-mode plasmas where typically H98(y,2) = 0.8 is obtained, compared to H98(y,2) = 1.0 in JET-C. In JET-ILW hybrid plasmas a similarly reduced pedestal pressure is compensated by an increased peaking of the core pressure profile resulting in H98(y,2) ≤ 1.25. The pedestal stability has significantly changed in high triangularity baseline plasmas where the confinement loss is also most apparent. Applying the same stability analysis for JET-C and JET-ILW, the measured pedestal in JET-ILW is stable with respect to the calculated peeling–ballooning stability limit and the ELM collapse time has increased to 2 ms from typically 200 µs in JET-C. This indicates that changes in the pedestal stability may have contributed to the reduced pedestal confinement in JET-ILW plasmas. A comparison of EPED1 pedestal pressure prediction with JET-ILW experimental data in over 500 JET-C and JET-ILW baseline and hybrid plasmas shows a good agreement with 0.8 < (measured pped)/(predicted pped,EPED) < 1.2, but that the role of triangularity is generally weaker in the JET-ILW experimental data than in the model predictions.


Nuclear Fusion | 2014

L–H power threshold studies in JET with Be/W and C wall

C. F. Maggi; E. Delabie; T. M. Biewer; M. Groth; N. Hawkes; M. Lehnen; E. de la Luna; K. McCormick; C. Reux; F. Rimini; E. R. Solano; Y. Andrew; C. Bourdelle; V. Bobkov; M. Brix; G. Calabrò; A. Czarnecka; J. Flanagan; E. Lerche; S. Marsen; I. Nunes; D. Van Eester; M. Stamp; Jet Efda Contributors

A comparison of the L?H power threshold (Pthr) in JET with all carbon, JET-C, and beryllium/tungsten wall (the ITER-like choice), JET-ILW, has been carried out in experiments with slow input power ramps and matched plasma shapes, divertor configuration and IP/BT pairs. The low density dependence of the L?H power threshold, namely an increase below a minimum density ne,min, which was first observed in JET with the MkII-GB divertor and C wall and subsequently not observed with the current MkII-HD geometry, is observed again with JET-ILW. At plasma densities above ne,min, Pthr is reduced by ?30%, and by ?40% when the radiation from the bulk plasma is subtracted (Psep), with JET-ILW compared to JET-C. At the L?H transition the electron temperature at the edge, where the pedestal later develops, is also lower with JET-ILW, for a given edge density. With JET-ILW the minimum density is found to increase roughly linearly with magnetic field, , while the power threshold at the minimum density scales as . The H-mode power threshold in JET-ILW is found to be sensitive both to variations in main plasma shape (Psep decreases with increasing lower triangularity and increases with upper triangularity) and in divertor configuration. When the data are recast in terms of Psep and Zeff or subdivertor neutral pressure a linear correlation is found, pointing to a possible role of Zeff and/or subdivertor neutral pressure in the L?H transition physics. Depending on the chosen divertor configuration, Pthr can be up to a factor of two lower than the ITPA scaling law for densities above ne,min. A shallow edge radial electric field well is observed at the L?H transition. The edge impurity ion poloidal velocity remains low, close to its L-mode values, ?5?km?s?1???2?3?km?s?1, at the L?H transition and throughout the H-mode phase, with no measureable increase within the experimental uncertainties. The edge toroidal rotation profile does not contribute to the depth of the negative Er well and thus may not be correlated with the formation of the edge transport barrier in JET.


Plasma Physics and Controlled Fusion | 2009

Pedestal width and ELM size identity studies in JET and DIII-D: implications for ITER

M. N. A. Beurskens; T.H. Osborne; L. D. Horton; L. Frassinetti; Richard J. Groebner; A.W. Leonard; P. Lomas; I. Nunes; S. Saarelma; P.B. Snyder; I. Balboa; B D Bray; Kristel Crombé; James M. Flanagan; C. Giroud; E. Giovannozzi; M. Kempenaars; N Kohen; A. Loarte; J. Lönnroth; E. de la Luna; G. Maddison; C. F. Maggi; D. C. McDonald; G.R. McKee; R. Pasqualotto; G. Saibene; R. Sartori; E. R. Solano; W. Suttrop

The dependence of the H-mode edge transport barrier width on normalized ion gyroradius (rho* = rho/a) in discharges with type I ELMs was examined in experiments combining data for the JET and DIII-D tokamaks. The plasma configuration as well as the local normalized pressure (beta), collisionality (nu*), Mach number and the ratio of ion and electron temperature at the pedestal top were kept constant, while rho* was varied by a factor of four. The width of the steep gradient region of the electron temperature (T-e) and density (n(e)) pedestals normalized to machine size showed no or only a weak trend with rho*. A rho(1/2) or rho(1) dependence of the pedestal width, given by some theoretical predictions, is not supported by the current experiments. This is encouraging for the pedestal scaling towards ITER as it operates at lower rho* than existing devices. Some differences in pedestal structure and ELM behaviour were, however, found between the devices; in the DIII-D discharges, the n(e) and T-e pedestal were aligned at high rho* but the ne pedestal shifted outwards in radius relative to T-e as rho* decreases, while on JET the profiles remained aligned while rho* was scanned by a factor of two. The energy loss at an ELM normalized to the pedestal energy increased from 10% to 40% as rho* increased by a factor of two in the DIII-D discharges but no such variation was observed in the case of JET. The measured pedestal pressures and widths were found to be consistent with the predictions from modelling based on peeling-ballooning stability theory, and are used to make projections towards ITER


Physical Review Letters | 2010

Observation of Confined Current Ribbon in JET Plasmas

E. R. Solano; P. Lomas; B. Alper; G. Xu; Y. Andrew; G. Arnoux; A. Boboc; Lucía Barrera; P. Belo; M. N. A. Beurskens; M. Brix; Kristel Crombé; E. de la Luna; S. Devaux; T. Eich; S. Gerasimov; C. Giroud; D. Harting; D. Howell; A. Huber; G. Kocsis; A. Korotkov; A. López-Fraguas; M. F. F. Nave; Elisabeth Rachlew; F. Rimini; S. Saarelma; A. Sirinelli; S. D. Pinches; H. Thomsen

We report the identification of a localized current structure inside the JET plasma. It is a field-aligned closed helical ribbon, carrying current in the same direction as the background current profile (cocurrent), rotating toroidally with the ion velocity (corotating). It appears to be located at a flat spot in the plasma pressure profile, at the top of the pedestal. The structure appears spontaneously in low density, high rotation plasmas, and can last up to 1.4 s, a time comparable to a local resistive time. It considerably delays the appearance of the first edge localized mode.


Nuclear Fusion | 2008

Pedestal and ELM response to impurity seeding in JET advanced scenario plasmas

M. N. A. Beurskens; G. Arnoux; A.S. Brezinsek; C. Challis; P. de Vries; C. Grioud; A. Huber; S. Jachmich; K. McCormick; R.A. Pitts; F. Rimini; A. Alfier; E. de la Luna; W. Fundamenski; S. Gerasimov; E. Giovannozzi; E. Joffrin; M. Kempenaars; X. Litaudon; T. Loarer; P. Lomas; J. Mailloux; R. Pasqualotto; V. Pericoli-Ridolfini; R. Pugno; Elisabeth Rachlew; S. Saarelma; E. R. Solano; M. J. Walsh; L. Zabeo

Advanced scenario plasmas must often be run at low densities and high power, leading to hot edge temperatures and consequent power handling issues at plasma - surface interaction zones. Experiments ...


Plasma Physics and Controlled Fusion | 2002

The formation and evolution of extreme shear reversal in JET and its influence on local thermal transport

N C Hawkes; Y. Andrew; C. D. Challis; R. DeAngelis; V Drozdov; J. Hobirk; E. Joffrin; Ph. Lotte; Elisabeth Rachlew; S. Reyes-Cortes; F. Sattin; E. R. Solano; B. C. Stratton; T. Tala; M. Valisa

In JET discharges where lower hybrid heating and current drive (LHCD) is applied early during the current ramp, a region of the plasma with zero current density is formed near the axis. At the boundary of this region the current density is large and Bθ increases rapidly over a small distance. In the central region the safety factor, q, is effectively infinite, but this falls steeply in the boundary region. Outside the boundary region q reaches a minimum, where the magnetic shear s≡r/q (dq/dr) becomes zero. The formation of this region of zero current is dependent on both the heating and the current drive effects of the LHCD. When LHCD is switched off the current profile begins to relax towards the resistive peaked current distribution of fully inductive tokamak operation. If LHCD is not used in the current rise then these current profiles are not established. Although the physical mechanism exists to drive the central plasma current below zero, in most cases it appears to be prevented from going negative. At least one MHD mechanism has been identified which could be responsible for this. The presence of the zero central current is closely linked to the periodic relaxation events seen in these discharges. In these discharges, internal transport barriers have been observed with additional heating powers substantially below the values required to obtain barriers in monotonic q profile cases.


Nuclear Fusion | 2016

Optimization of ICRH for core impurity control in JET-ILW

E. Lerche; M. Goniche; P. Jacquet; D. Van Eester; V. Bobkov; L. Colas; C. Giroud; I. Monakhov; F.J. Casson; F. Rimini; C. Angioni; M. Baruzzo; T. Blackman; S. Brezinsek; M. Brix; A. Czarnecka; Kristel Crombé; C. Challis; R. Dumont; Jacob Eriksson; N. Fedorczak; M. Graham; J. P. Graves; G. Gorini; J. Hobirk; E. Joffrin; Thomas Johnson; Ye. O. Kazakov; V. Kiptily; A. Krivska

Ion cyclotron resonance frequency (ICRF) heating has been an essential component in the development of high power H-mode scenarios in the Jet European Torus ITER-like wall (JET-ILW). The ICRF performance was improved by enhancing the antenna-plasma coupling with dedicated main chamber gas injection, including the preliminary minimization of RF-induced plasma-wall interactions, while the RF heating scenarios where optimized for core impurity screening in terms of the ion cyclotron resonance position and the minority hydrogen concentration. The impact of ICRF heating on core impurity content in a variety of 2.5 MA JET-ILW H-mode plasmas will be presented, and the steps that were taken for optimizing ICRF heating in these experiments will be reviewed.


Nuclear Fusion | 1988

Study of transport in the flexible heliac TJ-II

E. R. Solano; J.A. Rome; S.P. Hirshman

A numerical analysis of the classical loss mechanisms in the heliac TJ-II is presented. By using a guiding centre orbit code in flux co-ordinates, it is found that collisionless direct losses can be eliminated by electric drift effects for potentials of the order of the ion temperature. Neoclassical losses resulting from the interaction of collisions and complex orbits are calculated by solving the drift kinetic equation. When electric drifts are included, the resulting transport coefficients are comparable to those of a tokamak with the same aspect ratio and a rotational transform equal to the transform per field period in TJ-II. In the absence of auxiliary heating, the expected energy confinement time in TJ-II is 2.5 ms, and it decreases with increasing ion temperature.


Nuclear Fusion | 2011

Analyses of substantially different plasma current densities and safety factors reconstructed from magnetic diagnostics data

F. S. Zaitsev; D. P. Kostomarov; E. P. Suchkov; V. Drozdov; E. R. Solano; A. Murari; S. Matejcik; N. Hawkes; Jet-Efda Contributors

The problem of plasma current density and safety factor reconstruction using magnetic field measurements is considered. In the traditional formulation, the problem is strongly ill-posed. In particular, substantially different current densities and safety factors can be equally well attributed to the same set of measurements, given their experimental errors. In other words, the problem can be strongly unstable with respect to the input data. Different constraints are used in practice to make the problem more stable. This paper presents an accurate mathematical formulation of the inverse problem and its variants. A numerical algorithm is provided, which permits us to study the stability with respect to variations in the input data, to find all substantially different solutions, or to prove their absence, and to determine the confidence intervals of the reconstructions. The proposed method also allows establishing the maximum error for a given diagnostic (additional constraint), below which the diagnostic efficiently extracts one solution among several substantially different ones. Examples of very different current density and safety factor reconstructions for measurements with finite accuracy are presented for the original formulation of the inverse problem. Cases of MAST, JET and ITER-like plasmas are considered. It is shown that including the motional Stark effect (MSE) measurements as a constraint, provided the accuracy of MSE measurements is sufficient, allows identifying one solution among several very different ones, obtained without such a constraint. The maximum MSE diagnostics error for efficient identification of this solution is estimated for JET. The approach of this paper can be used for a wide range of ill-posed problems in physics and can help in selecting additional conditions, which can identify the most likely solution among several.

Collaboration


Dive into the E. R. Solano's collaboration.

Top Co-Authors

Avatar

I. Nunes

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

L. Frassinetti

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. Belonohy

European Atomic Energy Community

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jet Contributors

Princeton Plasma Physics Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge