Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Richard Stanley is active.

Publication


Featured researches published by E. Richard Stanley.


Science | 2010

Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages

Florent Ginhoux; Melanie Greter; Marylene Leboeuf; Sayan Nandi; Peter See; Solen Gokhan; Mark F. Mehler; Simon J. Conway; Lai Guan Ng; E. Richard Stanley; Igor M. Samokhvalov; Miriam Merad

Primitive Origins for Microglia Microglia are the resident macrophages of the central nervous system and are associated with neurodegeneration and brain inflammatory diseases. Although the developmental origins of other tissue macrophage populations are well established, the origins of microglia remain controversial. Ginhoux et al. (p. 841, published online 21 October) used in vivo lineage tracing studies to show that microglia arise early in mouse development and derive from primitive macrophages in the yolk sac. This is in contrast to other cells of the mononuclear phagocyte system, which arise later in development from a distinct progenitor population. The developmental origins of adult microglia are revealed. Microglia are the resident macrophages of the central nervous system and are associated with the pathogenesis of many neurodegenerative and brain inflammatory diseases; however, the origin of adult microglia remains controversial. We show that postnatal hematopoietic progenitors do not significantly contribute to microglia homeostasis in the adult brain. In contrast to many macrophage populations, we show that microglia develop in mice that lack colony stimulating factor-1 (CSF-1) but are absent in CSF-1 receptor–deficient mice. In vivo lineage tracing studies established that adult microglia derive from primitive myeloid progenitors that arise before embryonic day 8. These results identify microglia as an ontogenically distinct population in the mononuclear phagocyte system and have implications for the use of embryonically derived microglial progenitors for the treatment of various brain disorders.


Cell | 1985

The c-fms proto-oncogene product is related to the receptor for the mononuclear phagocyte growth factor, CSF 1

Charles J. Sherr; Carl W. Rettenmier; Rosalba Sacca; Martine F. Roussel; A. Thomas Look; E. Richard Stanley

The feline c-fms proto-oncogene product is a 170 kd glycoprotein with associated tyrosine kinase activity. This glycoprotein was expressed on mature cat macrophages from peritoneal inflammatory exudates and spleen. Similarly, the receptor for the murine colony-stimulating factor, CSF-1, is restricted to cells of the mononuclear phagocytic lineage and is a 165 kd glycoprotein with an associated tyrosine kinase. Rabbit antisera to a recombinant v-fms-coded polypeptide precipitated the feline c-fms product and specifically cross-reacted with a 165 kd glycoprotein from mouse macrophages. This putative product of the murine c-fms gene exhibited an associated tyrosine kinase activity in immune complexes, specifically bound murine CSF-1, and, in the presence of the growth factor, was phosphorylated on tyrosine in membrane preparations. The murine c-fms proto-oncogene product and the CSF-1 receptor are therefore related, and possibly identical, molecules.


Cancer Research | 2004

A Paracrine Loop between Tumor Cells and Macrophages Is Required for Tumor Cell Migration in Mammary Tumors

Jeffrey Wyckoff; Weigang Wang; Elaine Y. Lin; Yarong Wang; Fiona J. Pixley; E. Richard Stanley; Thomas Graf; Jeffrey W. Pollard; Jeffrey E. Segall; John Condeelis

Invasion of tumor cells into the surrounding connective tissue and blood vessels is a key step in the metastatic spread of breast tumors. Although the presence of macrophages in primary tumors is associated with increased metastatic potential, the mechanistic basis for this observation is unknown. Using a chemotaxis-based in vivo invasion assay and multiphoton-based intravital imaging, we show that the interaction between macrophages and tumor cells facilitates the migration of carcinoma cells in the primary tumor. Gradients of either epidermal growth factor (EGF) or colony-stimulating factor 1 (CSF-1) stimulate collection into microneedles of tumor cells and macrophages even though tumor cells express only EGF receptor and macrophages express only CSF-1 receptor. Intravital imaging shows that macrophages and tumor cells migrate toward microneedles containing either EGF or CSF-1. Inhibition of either CSF-1– or EGF-stimulated signaling reduces the migration of both cell types. This work provides the first direct evidence for a synergistic interaction between macrophages and tumor cells during cell migration in vivo and indicates a mechanism for how macrophages may contribute to metastasis.


Immunity | 2009

Origin of the Lamina Propria Dendritic Cell Network

Milena Bogunovic; Florent Ginhoux; Julie Helft; Limin Shang; Daigo Hashimoto; Melanie Greter; Kang Liu; Claudia Jakubzick; Molly A. Ingersoll; Marylene Leboeuf; E. Richard Stanley; Michel C. Nussenzweig; Sergio A. Lira; Gwendalyn J. Randolph; Miriam Merad

CX(3)CR1(+) and CD103(+) dendritic cells (DCs) in intestinal lamina propria play a key role in mucosal immunity. However, the origin and the developmental pathways that regulate their differentiation in the lamina propria remain unclear. We showed that monocytes gave rise exclusively to CD103(-)CX(3)CR1(+) lamina propria DCs under the control of macrophage-colony-stimulating factor receptor (M-CSFR) and Fms-like thyrosine kinase 3 (Flt3) ligands. In contrast, common DC progenitors (CDP) and pre-DCs, which give rise to lymphoid organ DCs but not to monocytes, differentiated exclusively into CD103(+)CX(3)CR1(-) lamina propria DCs under the control of Flt3 and granulocyte-macrophage-colony-stimulating factor receptor (GM-CSFR) ligands. CD103(+)CX(3)CR1(-) DCs but not CD103(-)CX(3)CR1(+) DCs in the lamina propria constitutively expressed CCR7 and were the first DCs to transport pathogenic Salmonella from the intestinal tract to the mesenteric lymph nodes. Altogether, these results underline the diverse origin of the lamina propria DC network and identify mucosal DCs that arise from pre-DCs as key sentinels of the gut immune system.


Cancer Research | 2007

Direct visualization of macrophage assisted tumor cell intravasation in mammary tumors

Jeffrey Wyckoff; Yarong Wang; Elaine Y. Lin; Jiu Feng Li; Sumanta Goswami; E. Richard Stanley; Jeffrey E. Segall; Jeffrey W. Pollard; John Condeelis

Although the presence of macrophages in tumors has been correlated with poor prognosis, until now there was no direct observation of how macrophages are involved in hematogenous metastasis. In this study, we use multiphoton microscopy to show, for the first time, that tumor cell intravasation occurs in association with perivascular macrophages in mammary tumors. Furthermore, we show that perivascular macrophages of the mammary tumor are associated with tumor cell intravasation in the absence of local angiogenesis. These results show that the interaction between macrophages and tumor cells lying in close proximity defines a microenvironment that is directly involved in the intravasation of cancer cells in mammary tumors.


Nature Immunology | 2006

Langerhans cells arise from monocytes in vivo.

Florent Ginhoux; Frank Tacke; Veronique Angeli; Milena Bogunovic; Martine Loubeau; Xu Ming Dai; E. Richard Stanley; Gwendalyn J. Randolph; Miriam Merad

Langerhans cells (LCs) are the only dendritic cells of the epidermis and constitute the first immunological barrier against pathogens and environmental insults. The factors regulating LC homeostasis remain elusive and the direct circulating LC precursor has not yet been identified in vivo. Here we report an absence of LCs in mice deficient in the receptor for colony-stimulating factor 1 (CSF-1) in steady-state conditions. Using bone marrow chimeric mice, we have established that CSF-1 receptor–deficient hematopoietic precursors failed to reconstitute the LC pool in inflamed skin. Furthermore, monocytes with high expression of the monocyte marker Gr-1 (also called Ly-6c/G) were specifically recruited to the inflamed skin, proliferated locally and differentiated into LCs. These results identify Gr-1hi monocytes as the direct precursors for LCs in vivo and establish the importance of the CSF-1 receptor in this process.


Cell | 1982

Survival of mononuclear phagocytes depends on a lineage-specific growth factor that the differentiated cells selectively destroy

Robert J. Tushinski; Ivan T. Oliver; Larry J. Guilbert; P.Wendy Tynan; Jonathan R. Warner; E. Richard Stanley

CSF-1 is a hemopoietic growth factor that specifically causes the proliferation and differentiation of mononuclear phagocytic cells. Receptors for CSF-1 occur exclusively on cells of the mononuclear phagocytic series (precursor leads to monoblast leads to promonocyte leads to monocyte leads to macrophage). Studies of the actions of CSF-1 on freshly explanted macrophages have been complicated by contamination of the primary cell isolates with CSF-1-producing cells and by the heterogeneity of the proliferative responses of individual macrophages. A method is described for the production of a highly purified and homogeneous population of adherent bone marrow-derived macrophages (BMMs) that are devoid of CSF-1-producing cells. The method may also be used to obtain nonadherent precursors of the mononuclear phagocytic series. Studies of CSF-1 action and degradation in cultures of BMMs have revealed several new findings. First, CSF-1 is required for both the survival (without proliferation) and the proliferation of BMMs. Second, CSF-1 is degraded by BMMs in a concentration-dependent manner, over the range of concentrations that stimulates both cell survival and proliferation. Third, the rate of CSF-1 degradation is saturable (or approximately 7 X 10(4) molecules per cell per hour) at CSF-1 concentrations that cause maximum proliferation (or approximately 0.4 nM). Under these conditions, BMMs are greatly enlarged and contain numerous phase-lucent vacuoles. Thus macrophages specifically require CSF-1 for both survival and proliferation, yet selectively and rapidly degrade it. This apparent dichotomy may have important implications for the role of CSF-1 in macrophage homeostasis in vivo.


Cancer Research | 2005

Macrophages Promote the Invasion of Breast Carcinoma Cells via a Colony-Stimulating Factor-1/Epidermal Growth Factor Paracrine Loop

Sumanta Goswami; Erik Sahai; Jeffrey Wyckoff; Michael Cammer; Dianne Cox; Fiona J. Pixley; E. Richard Stanley; Jeffrey E. Segall; John Condeelis

Previous studies have shown that macrophages and tumor cells are comigratory in mammary tumors and that these cell types are mutually dependent for invasion. Here we show that macrophages and tumor cells are necessary and sufficient for comigration and invasion into collagen I and that this process involves a paracrine loop. Macrophages express epidermal growth factor (EGF), which promotes the formation of elongated protrusions and cell invasion by carcinoma cells. Colony stimulating factor 1 (CSF-1) produced by carcinoma cells promotes the expression of EGF by macrophages. In addition, EGF promotes the expression of CSF-1 by carcinoma cells thereby generating a positive feedback loop. Disruption of this loop by blockade of either EGF receptor or CSF-1 receptor signaling is sufficient to inhibit both macrophage and tumor cell migration and invasion.


Journal of Experimental Medicine | 2009

The origin and development of nonlymphoid tissue CD103+ DCs

Florent Ginhoux; Kang Liu; Julie Helft; Milena Bogunovic; Melanie Greter; Daigo Hashimoto; Jeremy Price; Na Yin; Jonathan S. Bromberg; Sergio A. Lira; E. Richard Stanley; Michel C. Nussenzweig; Miriam Merad

CD103+ dendritic cells (DCs) in nonlymphoid tissues are specialized in the cross-presentation of cell-associated antigens. However, little is known about the mechanisms that regulate the development of these cells. We show that two populations of CD11c+MHCII+ cells separated on the basis of CD103 and CD11b expression coexist in most nonlymphoid tissues with the exception of the lamina propria. CD103+ DCs are related to lymphoid organ CD8+ DCs in that they are derived exclusively from pre-DCs under the control of fms-like tyrosine kinase 3 (Flt3) ligand, inhibitor of DNA protein 2 (Id2), and IFN regulatory protein 8 (IRF8). In contrast, lamina propria CD103+ DCs express CD11b and develop independently of Id2 and IRF8. The other population of CD11c+MHCII+ cells in tissues, which is CD103−CD11b+, is heterogenous and depends on both Flt3 and MCSF-R. Our results reveal that nonlymphoid tissue CD103+ DCs and lymphoid organ CD8+ DCs derive from the same precursor and follow a related differentiation program.


Immunity | 2013

IRF4 Transcription Factor-Dependent CD11b+ Dendritic Cells in Human and Mouse Control Mucosal IL-17 Cytokine Responses

Andreas Schlitzer; Naomi McGovern; Pearline Teo; Teresa Zelante; Koji Atarashi; Donovan Low; Adrian W. S. Ho; Peter See; Amanda Shin; Pavandip Singh Wasan; Guillaume Hoeffel; Benoit Malleret; Alexander F. Heiseke; Samantha Chew; Laura Jardine; Harriet A. Purvis; Catharien M. U. Hilkens; John Tam; Michael Poidinger; E. Richard Stanley; Anne Krug; Laurent Rénia; Baalasubramanian Sivasankar; Lai Guan Ng; Matthew Collin; Paola Ricciardi-Castagnoli; Kenya Honda; Muzlifah Haniffa; Florent Ginhoux

Summary Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24+CD64− DCs and contaminating CSF-1R-dependent CD24−CD64+ macrophages. Functionally, loss of CD24+CD11b+ DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24+CD11b+ DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies.

Collaboration


Dive into the E. Richard Stanley's collaboration.

Top Co-Authors

Avatar

Violeta Chitu

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Fiona J. Pixley

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sayan Nandi

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yee Guide Yeung

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yee-Guide Yeung

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Miriam Merad

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jeffrey Wyckoff

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

John Condeelis

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge