Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Ron de Kloet is active.

Publication


Featured researches published by E. Ron de Kloet.


Nature Reviews Neuroscience | 2005

Stress and the brain: from adaptation to disease

E. Ron de Kloet; Marian Joëls; Florian Holsboer

In response to stress, the brain activates several neuropeptide-secreting systems. This eventually leads to the release of adrenal corticosteroid hormones, which subsequently feed back on the brain and bind to two types of nuclear receptor that act as transcriptional regulators. By targeting many genes, corticosteroids function in a binary fashion, and serve as a master switch in the control of neuronal and network responses that underlie behavioural adaptation. In genetically predisposed individuals, an imbalance in this binary control mechanism can introduce a bias towards stress-related brain disease after adverse experiences. New candidate susceptibility genes that serve as markers for the prediction of vulnerable phenotypes are now being identified.


American Journal of Pathology | 2001

Hippocampal Apoptosis in Major Depression Is a Minor Event and Absent from Subareas at Risk for Glucocorticoid Overexposure

Paul J. Lucassen; Marianne B. Müller; Florian Holsboer; Jan Bauer; Anne Holtrop; Jose Wouda; Witte J. G. Hoogendijk; E. Ron de Kloet; Dick F. Swaab

Glucocorticoid (GC) overexposure in animals has been implicated in hippocampal dysfunctioning and neuronal loss. In major depression, hypercortisolemia, hypothalamic-pituitary-adrenocortical-axis alterations, and reduced hippocampal volumes are commonly observed; hence, hippocampal neurodegeneration is also expected. To study possible GC-related pathology, we investigated hippocampal tissue of 15 major-depressed patients, 16 matched controls, and 9 steroid-treated patients, using in situ-end-labeling for DNA fragmentation and apoptosis, and heat-shock protein 70 and nuclear transcription factor kappaB immunocytochemistry for damage-related responses. No obvious massive cell loss was observed in any group. In 11 of 15 depressed patients, rare, but convincing apoptosis was found in entorhinal cortex, subiculum, dentate gyrus, CA1, and CA4. Also in three steroid-treated patients, apoptosis was found. Except for several steroid-treated patients, heat-shock protein 70 staining was generally absent, nor was nuclear transcription factor-kappaB activation found. The detection in 11 of 15 depressed patients, in three steroid-treated, and in one control patient, demonstrates for the first time that apoptosis is involved in steroid-related changes in the human hippocampus. However, in absence of major pyramidal loss, its rare occurrence, that notably was absent from areas at risk for GC damage such as CA3, indicates that apoptosis probably only contributes to a minor extent to the volume changes in depression.


Brain Research | 1993

Interleukin-1β, but not interleukin-6, impairs spatial navigation learning

Melly S. Oitzl; Helga van Oers; B. Schöbitz; E. Ron de Kloet

Abstract The effects of the cytokines interleukin-1 and -6 (IL1β, IL6; 100 ng) on spatial learning were examined in the Morris water maze. Intracerebroventricular injection of IL1 or IL6 before the training on day 1 did not influence the acquisition of spatial navigation. However, IL1 administered at 60 min, but not immediately before the training, resulted in impaired performance of spatial navigation the following day. In contrasts, IL6 administered at both times had no effect. In a second experiment the same doses of IL1 and IL6 increased the body temperature of rats in a time-related fashion. The temperature effect of IL1 developed after a delay of 120 min, while the IL6-effect was immediate. Comparable behavioral changes might accompany infections or inflammatory diseases and therapeutic cytokine administration.


European Journal of Neuroscience | 1994

The Effect of Corticosterone on Reactivity to Spatial Novelty is Mediated by Central Mineralocorticosteroid Receptors

Melly S. Oitzl; Marc Fluttert; E. Ron de Kloet

Corticosterone, secreted by the adrenal glands, binds to central mineralocorticoid receptors with high affinity and to glucocorticoid receptors with a tenfold lower affinity. In previous studies we have shown that the selective activation of either mineralocorticoid receptors or glucocorticoid receptors exerts distinctly different behavioural effects. In this study we examined in particular the mineralocorticoid receptor‐mediated effect of corticosterone on the control of the behavioural response of male Wistar rats to spatial novelty. This analysis was based on our observation that in adrenal‐intact rats the presence of an object in the centre of an open field alters the time spent and distance walked in the centre compared to the peripheral area, i.e. the pattern of reactive locomotor activity is changed. Using this paradigm we found that 1 day after removal of the adrenals the rats increased their behavioural reactivity towards the object. Treatment of adrenalectomized rats with a low dose of corticosterone (50 μg/kg s.c.) 1 h prior to testing restored the behavioural reactivity to the level of sham‐operated, intact rats. Surprisingly, a high dose of corticosterone (1000 μg/kg s.c.) also increased the rats reactivity towards the object. The same high dose of corticosterone given to adrenal‐intact rats also increased behavioural reactivity. Pretreatment of these rats with an intracerebroventricular injection of the selective mineralocorticoid receptor antagonist RU28318 (100 ng/μl) prevented the corticosterone‐induced increase in behavioural reactivity, while the blockade of glucocorticoid receptors with the antagonist RU38486 (100 ng/μl) was not effective. Administration of the mineralocorticoid receptor antagonist without corticosterone to adrenal‐intact rats also increased behavioural reactivity, but this increase did not reach statistical significance. General locomotor activity was not affected by either treatment. In conclusion, we found a U‐shaped relationship between the pattern of behavioural reactivity in a novel environment and the circulating plasma corticosterone level. The response to spatial novelty appeared to be sensitive with respect to the activation and blockade of central, presumably hippocampal mineralocorticoid receptors.


Cns & Neurological Disorders-drug Targets | 2006

Stress, Depression and Hippocampal Apoptosis.

Paul J. Lucassen; Vivi M. Heine; Marianne B. Müller; Eline M. van der Beek; V.M. Wiegant; E. Ron de Kloet; Marian Joëls; Eberhard Fuchs; Dick F. Swaab; Boldizsár Czéh

In this review, we summarize and discuss recent studies on structural plasticity changes, particularly apoptosis, in the mammalian hippocampus in relation to stress and depression. Apoptosis continues to occur, yet with very low numbers, in the adult hippocampal dentate gyrus (DG) of various species. Stress and steroid exposure modulate the rate of apoptosis in the DG. Contrary to earlier studies, the impact of chronic stress on structural parameters of the hippocampus like cell number and volume, is rather modest, and requires prolonged and severe stress exposure before only small reductions (< 10 %) become detectable. This does not exclude other structural parameters, like synaptic terminal structure, or dendritic arborization from being significantly altered in critical hippocampal subregions like the DG and/or CA3. Neither does it imply that the functional implications of the changes after stress are also modest. Of interest, most of the structural plasticity changes appear transient and are generally reversible after appropiate recovery periods, or following cessation or blockade of the stress or corticosteroid exposure. The temporary slowing down of both apoptosis and adult proliferation, i.e. the DG turnover, after chronic stress will affect the overall composition, average age and identity of DG cells, and will have considerable consequences for the connectivity, input and properties of the hippocampal circuit and thus for memory function. Modulation of apoptosis and neurogenesis, by drugs interfering with stress components like MR and/or GR, and/or mediators of the cell death cascade, may therefore provide important drug targets for the modulation of mood and memory.


Journal of Cognitive Neuroscience | 2010

Corticosteroids operate as a switch between memory systems

Lars Schwabe; Hartmut Schächinger; E. Ron de Kloet; Melly S. Oitzl

Stress and corticosteroid hormones are known to affect learning and memory processes. In this study, we examined whether stress and corticosteroids are capable of facilitating the switch between multiple memory systems in mice. For this purpose, we designed a task that allowed measurement of nucleus caudate-based stimulus–response and hippocampus-based spatial learning strategies. Naive mice used spatial strategies to locate an exit hole on a circular hole board at a fixed location flagged by a proximal stimulus. When the mice were either stressed or administered corticosterone before the task, 30–50% of the mice switched to a stimulus–response strategy. This switch between learning strategies was accompanied by a rescue of performance, whereas performance declined in the stressed mice that kept using the spatial strategy. Pretreatment with a mineralocorticoid receptor antagonist prevented the switch toward the stimulus–response strategy but led to deterioration of hippocampus-dependent performance. These findings (i) show that corticosteroids promote the transition from spatial to stimulus–response memory systems, (ii) provide evidence that the mineralocorticoid receptor underlies this corticosteroid-mediated switch, and (iii) suggest that a stress-induced switch from hippocampus-based to nucleus caudate-based memory systems can rescue performance.


Molecular and Cellular Endocrinology | 2012

Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling.

Femke L. Groeneweg; Henk Karst; E. Ron de Kloet; Marian Joëls

The balance between corticosteroid actions induced via activation of the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) determines the brains response to stress. While both receptors are best known for their delayed genomic role, it has become increasingly evident that they can also associate with the plasma membrane and act as mediators of rapid, nongenomic signalling. Nongenomic corticosteroid actions in the brain are required for the coordination of a rapid adaptive response to stress; membrane-associated MRs and GRs play a major role herein. However, many questions regarding the underlying mechanism are still unresolved. How do MR and GR translocate to the membrane and what are their downstream signalling partners? In this review we discuss these issues based on insights obtained from related receptors, most notably the estrogen receptor α.


European Journal of Pharmacology | 2008

Corticosteroid receptor polymorphisms: Determinants of vulnerability and resilience

Roel H. DeRijk; E. Ron de Kloet

Why some individuals thrive and others break down under similar adverse conditions, is a central question in the neuroendocrinology of stress related psychopathology. The brain mineralocorticoid (MR) and glucocorticoid receptors (GR) operate in balance to coordinate behavioural, autonomic and neuroendocrine response patterns involved in homeostasis and health. Genetic variants of both the MR and GR have been functionally characterized. The four GR-gene single nucleotide polymorphisms (SNPs) (ER22/23EK (allele frequency: 3%), N363S (4%), BclI (37%), A3669G (15%)) and the two MR-gene SNPs (-2 G/C (50%), MR-I180V (11%)) showed in vitro changes in transactivational capacity, or affect stability of the mRNA (GR exon 9beta A3669G). All of these MR-and GR-SNPs change the regulation of the hypothalamus-pituitary-adrenal (HPA) axis at different levels including basal level (-2 G/C), dexamethasone induced negative feedback (ER22/23EK, N363S, BclI, 9beta A3669G) or following a psychosocial stress test (Trier Social Stress Test (TSST); all of the MR-and GR-SNPs). Importantly, the MR-I180V increased autonomic output and enhanced cortisol secretion during the TSST. Recently, several of these MR-and GR-variants have been found associated with psychopathology (depression, bipolar disorder). These data provide evidence that dysregulation of MR and GR are causative in the pathogenesis of depression and that these MR-and GR-gene variants are part of the genetic make up that determines individual stress-responsivity and coping style, affecting vulnerability to disease.


Psychoneuroendocrinology | 1995

Corticosterone, brain mineralocorticoid receptors (MRS) and the activity of the hypothalamic-pituitary-adrenal (hpa) axis: The Lewis rat as an example of increased central MR capacity and a hyporesponsive HPA axis

Melly S. Oitzl; Aernout D. van Haarst; Win Sutanto; E. Ron de Kloet

In this study we report a series of differences in brain and peripheral elements regulating the hypothalamic-pituitary-adrenal (HPA) axis between male LEW and Wistar rats. We found: (i) differential properties of mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) in the brain (hippocampus, hypothalamus) and pituitary: LEW rats displayed an increased capacity of MRs in the hippocampus and hypothalamus and a decreased capacity of glucocorticoid receptors GRs in the pituitary. The binding affinity (Kd) for MRs and GRs in the hippocampus was comparable. (ii) Lower concentrations of corticotropin releasing hormone (CRH) mRNA were detected in the nucleus paraventricularis of the hypothalamus of LEW rats. (iii) Adrenal weight was similar in LEW and Wistar rats; however, LEW rats had about 30% less adrenocortical cells. Subjecting adrenocortical cells to increasing doses of ACTH1-24 in vitro resulted in about a 60% smaller release of corticosterone in LEW rats. (iv) LEW rats escaped dexamethasone suppression showing increased basal levels of endogenous ACTH, but responded with a comparable release of corticosterone to the IV injection of 5 ng ACTH1-24. (v) LEW rats responded to a variety of stimuli: adrenalectomy under ether anaesthesia, a novel environment, a tail nick and restraint or an immunological challenge, with lower circulating ACTH and corticosterone plasma levels than Wistar rats. (vi) Evening levels of ACTH and corticosterone were lower in LEW than Wistar rats but did not differ in the morning. Blockade of brain MRs in the evening by a central injection of the specific MR antagonist RU28318 in LEW rats resulted in increased circulating levels of ACTH and corticosterone. (vii) Levels of corticosteroid-binding proteins were lower in one-day adrenalectomized LEW rats, indicating higher levels of free corticosterone. (viii) LEW rats had a smaller thymus than Wistar rats. Taken together, the receptor binding data correspond to a decreased neuroendocrine responsiveness of LEW rats to stress. We suggest that the shift in the central MR/GR balance of LEW rats, i.e. augmented MR-mediated effects of corticosterone, is the central regulating mechanism of the hyporeactive HPA axis in this rat strain. Lower levels of CRH mRNA in the hypothalamus and lower levels of ACTH and corticosterone in response to various stimuli, as well as the hyporesponsive adrenals to exogenous ACTH, are apparently the consequences of the life-long suppressive action of corticosterone via central MRs.


European Journal of Neuroscience | 2001

Chronic psychosocial stress differentially affects apoptosis in hippocampal subregions and cortex of the adult tree shrew.

P.J. Lucassen; Gesa K. Vollmann-Honsdorf; Mira Gleisberg; Boldizsár Czéh; E. Ron de Kloet; Eberhard Fuchs

We studied the effect of chronic psychosocial stress on cell death and volume changes in the tree shrew hippocampus. In situ end labelling (ISEL) identified low frequent but convincing apoptosis in many hippocampal subregions. Also in entorhinal cortex, apoptosis was found, generally at higher frequencies. After 28 days of chronic stress, apoptosis was significantly reduced in the CA1 stratum radiatum, whereas an increase was observed in the hilus (P < 0.04). With all subregions taken together, the hippocampus showed a decrease, whereas in the cortex, an increase in apoptosis was found after stress (P < 0.04). In a parallel and similar chronic stress study, post mortem morphometry of the same brain regions was performed, revealing mild decreases (7.6%) in entire hippocampal volume. We conclude that (i) low frequent apoptosis occurs throughout the adult tree shrew brain, and (ii) 28 days of chronic stress differentially affects its occurrence in distinct hippocampal subregions and entorhinal cortex. As previous stereological investigations failed to detect any loss in the principal neuronal layers, psychosocial stress, therefore, must affect other (structural) parameters like dendritic tree, interneurons, neurogenesis, or glia.

Collaboration


Dive into the E. Ron de Kloet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erno Vreugdenhil

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sergiu Dalm

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roel H. DeRijk

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dick F. Swaab

Royal Netherlands Academy of Arts and Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge