E. Roussos
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Roussos.
Science | 2010
Benjamin D. Teolis; G. H. Jones; Paul F. Miles; R. L. Tokar; B. A. Magee; J. H. Waite; E. Roussos; D. T. Young; Frank Judson Crary; A. J. Coates; Robert E. Johnson; W.-L. Tseng; Raul A. Baragiola
Extraterrestrial Atmosphere The detection of oxygen in the atmospheres of Jupiters icy moons, Europa and Ganymede, and the presence of this gas as the main constituent of the atmosphere that surrounds Saturns rings, has suggested the possibility of oxygen atmospheres around the icy moons that orbit inside Saturns magnetosphere. Using the Ion Neutral Mass Spectrometer onboard the Cassini spacecraft, Teolis et al. (p. 1813, published online 25 November; see the Perspective by Cruikshank) report the detection of a very tenuous oxygen and carbon dioxide atmosphere around Saturns icy moon Rhea. As with other icy satellites, this atmosphere is maintained through the dissociation of surface molecules and ejection into the atmosphere as a result of Saturns magnetospheric radiation. Rhea’s atmosphere is maintained by chemical decomposition of surface water ice under irradiation from Saturn’s magnetosphere. The flyby measurements of the Cassini spacecraft at Saturn’s moon Rhea reveal a tenuous oxygen (O2)–carbon dioxide (CO2) atmosphere. The atmosphere appears to be sustained by chemical decomposition of the surface water ice under irradiation from Saturn’s magnetospheric plasma. This in situ detection of an oxidizing atmosphere is consistent with remote observations of other icy bodies, such as Jupiter’s moons Europa and Ganymede, and suggestive of a reservoir of radiolytic O2 locked within Rhea’s ice. The presence of CO2 suggests radiolysis reactions between surface oxidants and organics or sputtering and/or outgassing of CO2 endogenic to Rhea’s ice. Observations of outflowing positive and negative ions give evidence for pickup ionization as a major atmospheric loss mechanism.
Archive | 2009
B. H. Mauk; D. C. Hamilton; T. W. Hill; G. B. Hospodarsky; Robert E. Johnson; C. Paranicas; E. Roussos; C. T. Russell; Donald E. Shemansky; E. C. Sittler; Richard M. Thorne
In this chapter, we review selected fundamental plasma processes that control the extensive space environment, or magnetosphere, of Saturn (see Chapter 9, for the global context). This writing occurs at a point in time when some measure of maturity has been achieved in our understanding of the operations of Saturns magnetosphere and its relationship to those of Earth and Jupiter. Our understanding of planetary magnetospheres has exploded in the past decade or so partly because of the presence of orbiting spacecraft (Galileo and Cassini) as well as remote sensing assets (e.g., Hubble Space Telescope). This book and chapter are intended to take stock of where we are in our understanding of Saturns magnetosphere following the successful return and analysis of extensive sets of Cassini data. The end of the prime mission provides us with an opportunity to consolidate older and newer work to provide guidance for continuing investigations.
Science | 2008
G. H. Jones; E. Roussos; N. Krupp; Uwe Beckmann; A. J. Coates; Frank Judson Crary; Iannis Dandouras; Valeri Dikarev; M. K. Dougherty; P. Garnier; Candice J. Hansen; Amanda R. Hendrix; G. B. Hospodarsky; Robert E. Johnson; Sascha Kempf; Krishan K. Khurana; S. M. Krimigis; Harald Krüger; W. S. Kurth; A. Lagg; H. J. McAndrews; D. G. Mitchell; C. Paranicas; Frank Postberg; C. T. Russell; Joachim Saur; Martin Seiß; Frank Spahn; Ralf Srama; Darrell F. Strobel
Saturns moon Rhea had been considered massive enough to retain a thin, externally generated atmosphere capable of locally affecting Saturns magnetosphere. The Cassini spacecrafts in situ observations reveal that energetic electrons are depleted in the moons vicinity. The absence of a substantial exosphere implies that Rheas magnetospheric interaction region, rather than being exclusively induced by sputtered gas and its products, likely contains solid material that can absorb magnetospheric particles. Combined observations from several instruments suggest that this material is in the form of grains and boulders up to several decimetres in size and orbits Rhea as an equatorial debris disk. Within this disk may reside denser, discrete rings or arcs of material.
Nature | 2006
Joachim Saur; B. H. Mauk; D. G. Mitchell; N. Krupp; Krishan K. Khurana; S. Livi; S. M. Krimigis; Patrick T. Newell; D. J. Williams; Pontus C Son Brandt; A. Lagg; E. Roussos; Michele K. Dougherty
Strong discrete aurorae on Earth are excited by electrons, which are accelerated along magnetic field lines towards the planet. Surprisingly, electrons accelerated in the opposite direction have been recently observed. The mechanisms and significance of this anti-earthward acceleration are highly uncertain because only earthward acceleration was traditionally considered, and observations remain limited. It is also unclear whether upward acceleration of the electrons is a necessary part of the auroral process or simply a special feature of Earths complex space environment. Here we report anti-planetward acceleration of electron beams in Saturns magnetosphere along field lines that statistically map into regions of aurora. The energy spectrum of these beams is qualitatively similar to the ones observed at Earth, and the energy fluxes in the observed beams are comparable with the energies required to excite Saturns aurora. These beams, along with the observations at Earth and the barely understood electron beams in Jupiters magnetosphere, demonstrate that anti-planetward acceleration is a universal feature of aurorae. The energy contained in the beams shows that upward acceleration is an essential part of the overall auroral process.
Geophysical Research Letters | 2014
Jamie M. Jasinski; C. S. Arridge; L. Lamy; J. S. Leisner; M. F. Thomsen; D. G. Mitchell; A. J. Coates; Aikaterini Radioti; G. H. Jones; E. Roussos; N. Krupp; Denis Grodent; Michele K. Dougherty; J. H. Waite
We report on the first analysis of magnetospheric cusp observations at Saturn by multiple in situ instruments onboard the Cassini spacecraft. Using this we infer the process of reconnection was occurring at Saturns magnetopause. This agrees with remote observations that showed the associated auroral signatures of reconnection. Cassini crossed the northern cusp around noon local time along a poleward trajectory. The spacecraft observed ion energy-latitude dispersions—a characteristic signature of the terrestrial cusp. This ion dispersion is “stepped,” which shows that the reconnection is pulsed. The ion energy-pitch angle dispersions suggest that the field-aligned distance from the cusp to the reconnection site varies between ∼27 and 51 RS. An intensification of lower frequencies of the Saturn kilometric radiation emissions suggests the prior arrival of a solar wind shock front, compressing the magnetosphere and providing more favorable conditions for magnetopause reconnection. Key Points We observe evidence for reconnection in the cusp plasma at Saturn We present evidence that the reconnection process can be pulsed at Saturn Saturns cusp shows similar characteristics to the terrestrial cusp
Journal of Geophysical Research | 2010
C. Paranicas; D. G. Mitchell; E. Roussos; P. Kollmann; N. Krupp; A. L. Müller; S. M. Krimigis; F. S. Turner; Pontus C Son Brandt; Abigail Rymer; Robert E. Johnson
[1] We present energetic electron data obtained by Cassini’s Magnetospheric Imaging Instrument in the inner magnetosphere of Saturn. We find here that inward transport and energization processes are consistent with conservation of the first two adiabatic invariants of motion. We model several injections near local midnight, one injection has a maximum energy of hundreds of keV, that are consistent with data. We also present mission‐ averaged data that shows an injection boundary in radial distance. Inward of this boundary, fluxes fall off toward the planet. Around this inner boundary, strong local time asymmetries are present in the averaged data with peak fluxes near midnight.
Journal of Geophysical Research | 2014
M. F. Thomsen; Daniel B. Reisenfeld; R. J. Wilson; M. Andriopoulou; Frank Judson Crary; G. B. Hospodarsky; C. M. Jackman; Xianzhe Jia; Krishan K. Khurana; C. Paranicas; E. Roussos; N. Sergis; R. L. Tokar
Interchange injection events are commonly observed by the Cassini spacecraft in the region between about 6 and 12 Rs (1 Rs = 60,268 km) and even frequently beyond. In this study, 13 examples of interchange injection events are identified in Cassini/Cassini Plasma Spectrometer data under special conditions such that time-of-flight (TOF) mass spectra could be obtained from entirely within the events. Using the TOF data to separate the main ion species H+, H2+, and W+, approximate densities of each species are calculated under the assumption that all distributions were isotropic. The light-ion density ratios, H2+/H+, in the injection events are not discernibly different from those ratios in control intervals from the ambient plasma. However, the water-group ratio, W+/H+, is significantly lower than ambient. The comparison of the measured density ratios with the range of values observed throughout Saturns magnetosphere indicates that the values of W+/H+ that are as low as those observed within the injection events are found primarily beyond L~14 (where L is the equatorial crossing distance, in Saturn radius, of a dipole field line), indicating that the injection events are delivering plasma from the outer magnetosphere at times traveling at least 6 Rs.
Journal of Geophysical Research | 2016
C. S. Arridge; Jamie M. Jasinski; Nicholas Achilleos; Y. V. Bogdanova; E. J. Bunce; S. W. H. Cowley; Andrew N. Fazakerley; Krishan K. Khurana; L. Lamy; J. S. Leisner; E. Roussos; C. T. Russell; P. Zarka; A. J. Coates; Michele K. Dougherty; G. H. Jones; S. M. Krimigis; N. Krupp
The magnetospheric cusps are important sites of the coupling of a magnetosphere with the solar wind. The combination of both ground- and space-based observations at Earth have enabled considerable progress to be made in understanding the terrestrial cusp and its role in the coupling of the magnetosphere to the solar wind via the polar magnetosphere. Voyager 2 fully explored Neptunes cusp in 1989 but highly inclined orbits of the Cassini spacecraft at Saturn present the most recent opportunity to repeatedly studying the polar magnetosphere of a rapidly rotating planet. In this paper we discuss observations made by Cassini during two passes through Saturns southern polar magnetosphere. Our main findings are that i) Cassini directly encounters the southern polar cusp with evidence for the entry of magnetosheath plasma into the cusp via magnetopause reconnection, ii) magnetopause reconnection and entry of plasma into the cusp can occur over a range of solar wind conditions, and iii) double cusp morphologies are consistent with the position of the cusp oscillating in phase with Saturns global magnetospheric periodicities.
Journal of Geophysical Research | 2017
O. Witasse; B. Sánchez-Cano; M. L. Mays; P. Kajdič; H. J. Opgenoorth; H. A. Elliott; I. G. Richardson; I. Zouganelis; J. Zender; Robert F. Wimmer-Schweingruber; L. Turc; M. G. G. T. Taylor; E. Roussos; A. Rouillard; I. Richter; J. D. Richardson; Robin Ramstad; G. Provan; Arik Posner; J. J. Plaut; D. Odstrcil; H. Nilsson; P. Niemenen; S. E. Milan; Kathleen Mandt; Henning Lohf; M. Lester; J.-P. Lebreton; E. Kuulkers; N. Krupp
We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, MAVEN, Mars Odyssey and MSL missions, 44 hours before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9 AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a non-ambiguous signature at New Horizons. A potential detection of this ICME by Voyager-2 at 110-111 AU is also discussed. The multi-spacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116°, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P and Saturn.
Geophysical Research Letters | 2014
Tom A. Nordheim; G. H. Jones; E. Roussos; J.S. Leisner; A. J. Coates; W. S. Kurth; Krishan K. Khurana; N. Krupp; M. K. Dougherty; J. H. Waite
On 26 September 2005, Cassini conducted its only close targeted flyby of Saturns small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moons surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ −200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.