Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Salah is active.

Publication


Featured researches published by E. Salah.


Nature | 2014

Stereospecific targeting of MTH1 by ( S )-crizotinib as an anticancer strategy

Kilian Huber; E. Salah; Branka Radic; Manuela Gridling; J.M. Elkins; Alexey Stukalov; Ann-Sofie Jemth; Camilla Göktürk; Kumar Sanjiv; Kia Strömberg; Therese Pham; Ulrika Warpman Berglund; Jacques Colinge; Keiryn L. Bennett; Joanna I. Loizou; Thomas Helleday; Stefan Knapp; Giulio Superti-Furga

Activated RAS GTPase signalling is a critical driver of oncogenic transformation and malignant disease. Cellular models of RAS-dependent cancers have been used to identify experimental small molecules, such as SCH51344, but their molecular mechanism of action remains generally unknown. Here, using a chemical proteomic approach, we identify the target of SCH51344 as the human mutT homologue MTH1 (also known as NUDT1), a nucleotide pool sanitizing enzyme. Loss-of-function of MTH1 impaired growth of KRAS tumour cells, whereas MTH1 overexpression mitigated sensitivity towards SCH51344. Searching for more drug-like inhibitors, we identified the kinase inhibitor crizotinib as a nanomolar suppressor of MTH1 activity. Surprisingly, the clinically used (R)-enantiomer of the drug was inactive, whereas the (S)-enantiomer selectively inhibited MTH1 catalytic activity. Enzymatic assays, chemical proteomic profiling, kinome-wide activity surveys and MTH1 co-crystal structures of both enantiomers provide a rationale for this remarkable stereospecificity. Disruption of nucleotide pool homeostasis via MTH1 inhibition by (S)-crizotinib induced an increase in DNA single-strand breaks, activated DNA repair in human colon carcinoma cells, and effectively suppressed tumour growth in animal models. Our results propose (S)-crizotinib as an attractive chemical entity for further pre-clinical evaluation, and small-molecule inhibitors of MTH1 in general as a promising novel class of anticancer agents.


Cell | 2008

Structural Coupling of SH2-Kinase Domains Links Fes and Abl Substrate Recognition and Kinase Activation

Panagis Filippakopoulos; Michael Kofler; Oliver Hantschel; Gerald Gish; Florian Grebien; E. Salah; Philipp Neudecker; Lewis E. Kay; Benjamin E. Turk; Giulio Superti-Furga; Tony Pawson; Stefan Knapp

Summary The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase αC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.


PLOS Biology | 2010

Structure of the CaMKIIδ/Calmodulin Complex Reveals the Molecular Mechanism of CaMKII Kinase Activation

P. Rellos; A.C.W. Pike; Frank H. Niesen; E. Salah; Wen Hwa Lee; Frank von Delft; Stefan Knapp

Structural and biophysical studies reveal how CaMKII kinases, which are important for cellular learning and memory, are switched on by binding of Ca2+/calmodulin.


Nature Biotechnology | 2016

Comprehensive characterization of the Published Kinase Inhibitor Set

J.M. Elkins; Vita Fedele; M. Szklarz; Kamal R. Abdul Azeez; E. Salah; Jowita Mikolajczyk; Sergei Romanov; Nikolai Sepetov; Xi-Ping Huang; Bryan L. Roth; Ayman Al Haj Zen; Denis Fourches; Eugene N. Muratov; Alex Tropsha; Joel Morris; Beverly A. Teicher; Mark Kunkel; Eric C. Polley; Karen E Lackey; Francis Atkinson; John P. Overington; Paul Bamborough; Susanne Müller; Daniel J. Price; Timothy M. Willson; David H. Drewry; Stefan Knapp; William J. Zuercher

Despite the success of protein kinase inhibitors as approved therapeutics, drug discovery has focused on a small subset of kinase targets. Here we provide a thorough characterization of the Published Kinase Inhibitor Set (PKIS), a set of 367 small-molecule ATP-competitive kinase inhibitors that was recently made freely available with the aim of expanding research in this field and as an experiment in open-source target validation. We screen the set in activity assays with 224 recombinant kinases and 24 G protein–coupled receptors and in cellular assays of cancer cell proliferation and angiogenesis. We identify chemical starting points for designing new chemical probes of orphan kinases and illustrate the utility of these leads by developing a selective inhibitor for the previously untargeted kinases LOK and SLK. Our cellular screens reveal compounds that modulate cancer cell growth and angiogenesis in vitro. These reagents and associated data illustrate an efficient way forward to increasing understanding of the historically untargeted kinome.


Structure | 2007

Structural and Functional Characterization of the Human Protein Kinase ASK1

Gabor Bunkoczi; E. Salah; Panagis Filippakopoulos; Oleg Fedorov; Susanne Müller; Frank Sobott; Sirlester A. Parker; Haifeng Zhang; Wang Min; Benjamin E. Turk; Stefan Knapp

Summary Apoptosis signal-regulating kinase 1 (ASK1) plays an essential role in stress and immune response and has been linked to the development of several diseases. Here, we present the structure of the human ASK1 catalytic domain in complex with staurosporine. Analytical ultracentrifugation (AUC) and crystallographic analysis showed that ASK1 forms a tight dimer (Kd ∼ 0.2 μM) interacting in a head-to-tail fashion. We found that the ASK1 phosphorylation motifs differ from known ASK1 phosphorylation sites but correspond well to autophosphorylation sites identified by mass spectrometry. Reporter gene assays showed that all three identified in vitro autophosphorylation sites (Thr813, Thr838, Thr842) regulate ASK1 signaling, but site-directed mutants showed catalytic activities similar to wild-type ASK1, suggesting a regulatory mechanism independent of ASK1 kinase activity. The determined high-resolution structure of ASK1 and identified ATP mimetic inhibitors will provide a first starting point for the further development of selective inhibitors.


Methods of Molecular Biology | 2008

High throughput production of recombinant human proteins for crystallography.

O. Gileadi; N. Burgess-Brown; Steve M. Colebrook; G. Berridge; P. Savitsky; Carol Smee; Peter Loppnau; C. Johansson; E. Salah; Nadia H. Pantic

This chapter presents in detail the process used in high throughput bacterial production of recombinant human proteins for crystal structure determination. The core principles are: (1) Generating at least 10 truncated constructs from each target gene. (2) Ligation-independent cloning (LIC) into a bacterial expression vector. All proteins are expressed with an N-terminal, TEV protease cleavable fusion peptide. (3) Small-scale test expression to identify constructs producing soluble protein. (4) Liter-scale production in shaker flasks. (5) Purification by Ni-affinity chromatography and gel filtration. (6) Protein characterization and preparation for crystallography. The chapter also briefly presents alternative procedures, to be applied based on specific knowledge of protein families or when the core protocol is unsatisfactory. This scheme has been applied to more than 550 human proteins (>10,000 constructs) and has resulted in the deposition of 112 unique structures. The methods presented do not depend on specialized equipment or robotics; hence, they provide an effective approach for handling individual proteins in a regular research lab.


eLife | 2016

Quality control in oocytes by p63 is based on a spring-loaded activation mechanism on the molecular and cellular level

Daniel Coutandin; Christian Osterburg; Ratnesh Kumar Srivastav; Manuela Sumyk; Sebastian Kehrloesser; Jakob Gebel; Marcel Tuppi; Jens Hannewald; Birgit Schäfer; E. Salah; Sebastian Mathea; Uta Müller-Kuller; James Doutch; Manuel Grez; Stefan Knapp; Volker Dötsch

Mammalian oocytes are arrested in the dictyate stage of meiotic prophase I for long periods of time, during which the high concentration of the p53 family member TAp63α sensitizes them to DNA damage-induced apoptosis. TAp63α is kept in an inactive and exclusively dimeric state but undergoes rapid phosphorylation-induced tetramerization and concomitant activation upon detection of DNA damage. Here we show that the TAp63α dimer is a kinetically trapped state. Activation follows a spring-loaded mechanism not requiring further translation of other cellular factors in oocytes and is associated with unfolding of the inhibitory structure that blocks the tetramerization interface. Using a combination of biophysical methods as well as cell and ovary culture experiments we explain how TAp63α is kept inactive in the absence of DNA damage but causes rapid oocyte elimination in response to a few DNA double strand breaks thereby acting as the key quality control factor in maternal reproduction. DOI: http://dx.doi.org/10.7554/eLife.13909.001


Journal of Medicinal Chemistry | 2011

Crystal Structures of Abl-Related Gene (Abl2) in Complex with Imatinib, Tozasertib (Vx-680), and a Type I Inhibitor of the Triazole Carbothioamide Class.

E. Salah; E. Ugochukwu; Alastair J. Barr; Frank von Delft; Stefan Knapp; J.M. Elkins

ABL2 (also known as ARG (ABL related gene)) is closely related to the well-studied Abelson kinase cABL. ABL2 is involved in human neoplastic diseases and is deregulated in solid tumors. Oncogenic gene translocations occur in acute leukemia. So far no structural information for ABL2 has been reported. To elucidate structural determinants for inhibitor interaction, we determined the cocrystal structure of ABL2 with the oncology drug imatinib. Interestingly, imatinib not only interacted with the ATP binding site of the inactive kinase but was also bound to the regulatory myristate binding site. This structure may therefore serve as a tool for the development of allosteric ABL inhibitors. In addition, we determined the structures of ABL2 in complex with VX-680 and with an ATP-mimetic type I inhibitor, which revealed an interesting position of the DFG motif intermediate between active and inactive conformations, that may also serve as a template for future inhibitor design.


Cell Death & Differentiation | 2016

Mechanism of TAp73 inhibition by ΔNp63 and structural basis of p63/p73 hetero-tetramerization.

Jakob Gebel; Laura M. Luh; Daniel Coutandin; Christian Osterburg; Frank Löhr; Birgit Schäfer; Ann-Sophie Frombach; Manuela Sumyk; Lena Buchner; T. Krojer; E. Salah; Sebastian Mathea; Peter Güntert; Stefan Knapp; Volker Dötsch

Members of the p53 tumor-suppressor family are expressed as multiple isoforms. Isoforms with an N-terminal transactivation domain are transcriptionally active, while those ones lacking this domain often inhibit the transcriptional activity of other family members. In squamous cell carcinomas, the high expression level of ΔNp63α inhibits the tumor-suppressor function of TAp73β. This can in principle be due to blocking of the promoter or by direct interaction between both proteins. p63 and p73 can hetero-oligomerize through their tetramerization domains and a hetero-tetramer consisting of two p63 and two p73 molecules is thermodynamically more stable than both homo-tetramers. Here we show that cells expressing both p63 and p73 exist in mouse epidermis and hair follicle and that hetero-tetramer complexes can be detected by immunoprecipitation in differentiating keratinocytes. Through structure determination of the hetero-tetramer, we reveal why this hetero-tetramer is the thermodynamically preferred species. We have created mutants that exclusively form either hetero-tetramers or homo-tetramers, allowing to investigate the function of these p63/p73 hetero-tetramers. Using these tools, we show that inhibition of TAp73β in squamous cell carcinomas is due to promoter squelching and not direct interaction.


ACS Chemical Biology | 2016

Structure of the Human Protein Kinase ZAK in Complex with Vemurafenib

Sebastian Mathea; Kamal R. Abdul Azeez; E. Salah; Cynthia Tallant; Finn Wolfreys; Rebecca Konietzny; R. Fischer; Hua Jane Lou; Paul E. Brennan; Gisela Schnapp; Alexander Pautsch; Benedikt M. Kessler; Benjamin E. Turk; Stefan Knapp

The mixed lineage kinase ZAK is a key regulator of the MAPK pathway mediating cell survival and inflammatory response. ZAK is targeted by several clinically approved kinase inhibitors, and inhibition of ZAK has been reported to protect from doxorubicin-induced cardiomyopathy. On the other hand, unintended targeting of ZAK has been linked to severe adverse effects such as the development of cutaneous squamous cell carcinoma. Therefore, both specific inhibitors of ZAK, as well as anticancer drugs lacking off-target activity against ZAK, may provide therapeutic benefit. Here, we report the first crystal structure of ZAK in complex with the B-RAF inhibitor vemurafenib. The cocrystal structure displayed a number of ZAK-specific features including a highly distorted P loop conformation enabling rational inhibitor design. Positional scanning peptide library analysis revealed a unique substrate specificity of the ZAK kinase including unprecedented preferences for histidine residues at positions -1 and +2 relative to the phosphoacceptor site. In addition, we screened a library of clinical kinase inhibitors identifying several inhibitors that potently inhibit ZAK, demonstrating that this kinase is commonly mistargeted by currently used anticancer drugs.

Collaboration


Dive into the E. Salah's collaboration.

Top Co-Authors

Avatar

Stefan Knapp

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.M. Elkins

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.R.C. Muniz

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Coutandin

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Volker Dötsch

Goethe University Frankfurt

View shared research outputs
Researchain Logo
Decentralizing Knowledge