E. Sartori
European Atomic Energy Community
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Sartori.
Nuclear Fusion | 2015
H.P.L. de Esch; M. Kashiwagi; M. Taniguchi; T. Inoue; G. Serianni; P. Agostinetti; G. Chitarin; N. Marconato; E. Sartori; P. Sonato; P. Veltri; N. Pilan; Daniele Aprile; N. Fonnesu; V. Antoni; M. J. Singh; R.S. Hemsworth; M. Cavenago
The physics design of the accelerator for the heating neutral beamline on ITER is now finished and this paper describes the considerations and choices which constitute the basis of this design. Equal acceleration gaps of 88 mm have been chosen to improve the voltage holding capability while keeping the beam divergence low. Kerbs (metallic plates around groups of apertures, attached to the downstream surface of the grids) are used to compensate for the beamlet–beamlet interaction and to point the beamlets in the right direction. A novel magnetic configuration is employed to compensate for the beamlet deflection caused by the electron suppression magnets in the extraction grid. A combination of long-range and short-range magnetic fields is used to reduce electron leakage between the grids and limit the transmitted electron power to below 800 kW.
Review of Scientific Instruments | 2014
V. Antoni; P. Agostinetti; Daniele Aprile; M. Cavenago; G. Chitarin; N. Fonnesu; N. Marconato; N. Pilan; E. Sartori; G. Serianni; P. Veltri
Two Neutral Beam Injectors (NBI) are foreseen to provide a substantial fraction of the heating power necessary to ignite thermonuclear fusion reactions in ITER. The development of the NBI system at unprecedented parameters (40 A of negative ion current accelerated up to 1 MV) requires the realization of a full scale prototype, to be tested and optimized at the Test Facility under construction in Padova (Italy). The beam source is the key component of the system and the design of the multi-grid accelerator is the goal of a multi-national collaborative effort. In particular, beam steering is a challenging aspect, being a tradeoff between requirements of the optics and real grids with finite thickness and thermo-mechanical constraints due to the cooling needs and the presence of permanent magnets. In the paper, a review of the accelerator physics and an overview of the whole R&D physics program aimed to the development of the injector source are presented.
Review of Scientific Instruments | 2016
M. Cavenago; G. Serianni; M. De Muri; P. Agostinetti; V. Antoni; C. Baltador; M. Barbisan; L. Baseggio; M. Bigi; V. Cervaro; F. Degli Agostini; E. Fagotti; T. Kulevoy; N. Ippolito; B. Laterza; A. Minarello; M. Maniero; R. Pasqualotto; S. Petrenko; M. Poggi; D. Ravarotto; M. Recchia; E. Sartori; M. Sattin; P. Sonato; F. Taccogna; V. Variale; P. Veltri; B. Zaniol; L. Zanotto
Neutral Beam Injectors (NBIs), which need to be strongly optimized in the perspective of DEMO reactor, request a thorough understanding of the negative ion source used and of the multi-beamlet optics. A relatively compact radio frequency (rf) ion source, named NIO1 (Negative Ion Optimization 1), with 9 beam apertures for a total H(-) current of 130 mA, 60 kV acceleration voltage, was installed at Consorzio RFX, including a high voltage deck and an X-ray shield, to provide a test bench for source optimizations for activities in support to the ITER NBI test facility. NIO1 status and plasma experiments both with air and with hydrogen as filling gas are described. Transition from a weak plasma to an inductively coupled plasma is clearly evident for the former gas and may be triggered by rising the rf power (over 0.5 kW) at low pressure (equal or below 2 Pa). Transition in hydrogen plasma requires more rf power (over 1.5 kW).
Review of Scientific Instruments | 2014
E. Sartori; P. Agostinetti; S. Dal Bello; D. Marcuzzi; G. Serianni; P. Sonato; P. Veltri
In negative ion electrostatic accelerators a considerable fraction of extracted ions is lost by collision processes causing efficiency loss and heat deposition over the components. Stripping is proportional to the local density of gas, which is steadily injected in the plasma source; its pumping from the extraction and acceleration stages is a key functionality for the prototype of the ITER Neutral Beam Injector, and it can be simulated with the 3D code AVOCADO. Different geometric solutions were tested aiming at the reduction of the gas density. The parameter space considered is limited by constraints given by optics, aiming, voltage holding, beam uniformity, and mechanical feasibility. The guidelines of the optimization process are presented together with the proposed solutions and the results of numerical simulations.
Review of Scientific Instruments | 2016
E. Sartori; T. J. Maceina; P. Veltri; M. Cavenago; G. Serianni
Ion beam space charge compensation occurs by cumulating in the beam potential well charges having opposite polarity, usually generated by collisional processes. In this paper we investigate the case of a H(-) ion beam drift, in a bi-dimensional approximation of the NIO1 (Negative Ion Optimization phase 1) negative ion source. H(-) beam ion transport and plasma formation are studied via particle-in-cell simulations. Differential cross sections are sampled to determine the velocity distribution of secondary particles generated by ionization of the residual gas (electrons and slow H2 (+) ions) or by stripping of the beam ions (electrons, H, and H(+)). The simulations include three beamlets of a horizontal section, so that multibeamlet space charge and secondary particle diffusion between separate generation regions are considered, and include a repeller grid biased at various potentials. Results show that after the beam space charge is effectively screened by the secondary plasma in about 3 μs (in agreement with theoretical expectations), a plasma grows across the beamlets with a characteristic time three times longer, and a slight overcompensation of the electric potential is verified as expected in the case of negative ions.
IEEE Transactions on Plasma Science | 2014
E. Sartori; P. Veltri; G. Serianni; Mauro Dalla Palma; G. Chitarin; P. Sonato
The injection of high energy beams of neutral particles is a fundamental method for plasma heating to ignition in the advanced fusion devices. The requirements of the heating neutral beam to be installed on ITER Tokamak and of the full scale prototype megavolt ITER injector and concept advancement represent a large extrapolation from existing devices. An extensive work on numerical modeling is required to optimize the final design and the injector performances. As the power and charge deposition onto components originates from several sources (primary beam, co-accelerated electrons, and secondary production by beam-gas, beam-surface, and electron-surface interaction), the beam propagation along the beam line is simulated by a comprehensive 3-D model of the beam transport and power deposition phenomena along the injector. The code calculates the particle motion in electromagnetic fields, including the secondary production, the reionization of the beam, and the interactions with the surfaces. The preliminary calculations here reported are focused on the phenomena occurring in the residual ion dump.
THIRD INTERNATIONAL SYMPOSIUM ON NEGATIVE IONS, BEAMS AND SOURCES (NIBS 2012) | 2013
E. Sartori; S. Dal Bello; G. Serianni; P. Sonato
MITICA is the ITER neutral beam test facility to be built in Padova for the generation of a 40A D- ion beam with a 16×5×16 array of 1280 beamlets accelerated to 1MV. The background gas pressure distribution and the particle flows inside MITICA accelerator are critical aspects for stripping losses, generation of secondary particles and beam non-uniformities. To keep the stripping losses in the extraction and acceleration stages reasonably low, the source pressure should be 0.3 Pa or less. The gas flow in MITICA accelerator is being studied using a 3D Finite Element code, named Avocado. The gas-wall interaction model is based on the cosine law, and the whole vacuum system geometry is represented by a view factor matrix based on surface discretization and gas property definitions. Pressure distribution and mutual fluxes are then solved linearly. In this paper the result of a numerical simulation is presented, showing the steady-state pressure distribution inside the accelerator when gas enters the system at ...
Review of Scientific Instruments | 2016
E. Sartori; P. Veltri; M. Cavenago; G. Serianni
NIO1 (Negative Ion Optimization 1) is a versatile ion source designed to study the physics of production and acceleration of H- beams up to 60 keV. In ion sources, the gas is steadily injected in the plasma source to sustain the discharge, while high vacuum is maintained by a dedicated pumping system located in the vessel. In this paper, the three dimensional gas flow in NIO1 is studied in the molecular flow regime by the Avocado code. The analysis of the gas density profile along the accelerator considers the influence of effective gas temperature in the source, of the gas temperature accommodation by collisions at walls, and of the gas particle mass. The calculated source and vessel pressures are compared with experimental measurements in NIO1 during steady gas injection.
Review of Scientific Instruments | 2016
S. Spagnolo; M. Spolaore; M. Dalla Palma; R. Pasqualotto; E. Sartori; G. Serianni; P. Veltri
Megavolt ITER Injector and Concept Advancement, the full-scale prototype of ITER neutral beam injector, is under construction in Italy. The device will generate deuterium negative ions, then accelerated and neutralized. The emerging beam, after removal of residual ions, will be dumped onto a calorimeter. The presence of plasma and its parameters will be monitored in the components of the beam-line, by means of specific electrostatic probes. Double probes, with the possibility to be configured as Langmuir probes and provide local ion density and electron temperature measurements, will be employed in the neutralizer and in the residual ion dump. Biased electrodes collecting secondary emission electrons will be installed in the calorimeter with the aim to provide a horizontal profile of the beam.
Review of Scientific Instruments | 2016
M. Dalla Palma; R. Pasqualotto; E. Sartori; S. Spagnolo; M. Spolaore; P. Veltri
Embedded sensors have been designed for installation on the components of the MITICA beamline, the prototype ITER neutral beam injector (Megavolt ITER Injector and Concept Advancement), to derive characteristics of the particle beam and to monitor the component conditions during operation for protection and thermal control. Along the beamline, the components interacting with the particle beam are the neutralizer, the residual ion dump, and the calorimeter. The design and the positioning of sensors on each component have been developed considering the expected beam-surface interaction including non-ideal and off-normal conditions. The arrangement of the following instrumentation is presented: thermal sensors, strain gages, electrostatic probes including secondary emission detectors, grounding shunt for electrical currents, and accelerometers.