Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Schinnerer is active.

Publication


Featured researches published by E. Schinnerer.


Astrophysical Journal Supplement Series | 2007

The Cosmic Evolution Survey (COSMOS): Overview

N. Z. Scoville; H. Aussel; M. Brusa; P. Capak; C. M. Carollo; M. Elvis; Mauro Giavalisco; L. Guzzo; G. Hasinger; C. D. Impey; Jean-Paul Kneib; O. LeFevre; S. J. Lilly; B. Mobasher; A. Renzini; Robert Michael Rich; D. B. Sanders; E. Schinnerer; D. Schminovich; Patrick Lynn Shopbell; Yoshiaki Taniguchi; Neil De Grasse Tyson

The Cosmic Evolution Survey (COSMOS) is designed to probe the correlated evolution of galaxies, star formation, active galactic nuclei (AGNs), and dark matter (DM) with large-scale structure (LSS) over the redshift range z > 0.5-6. The survey includes multiwavelength imaging and spectroscopy from X-ray-to-radio wavelengths covering a 2 deg^2 area, including HST imaging. Given the very high sensitivity and resolution of these data sets, COSMOS also provides unprecedented samples of objects at high redshift with greatly reduced cosmic variance, compared to earlier surveys. Here we provide a brief overview of the survey strategy, the characteristics of the major COSMOS data sets, and a summary the science goals.


Astrophysical Journal Supplement Series | 2007

zCOSMOS: A large VLT/VIMOS redshift survey covering 0 < z < 3 in the COSMOS field

S. Lilly; O. Le Fèvre; A. Renzini; G. Zamorani; M. Scodeggio; T. Contini; C. M. Carollo; G. Hasinger; J.-P. Kneib; A. Iovino; V. Le Brun; C. Maier; V. Mainieri; M. Mignoli; J. D. Silverman; L. Tasca; M. Bolzonella; A. Bongiorno; D. Bottini; P. Capak; Karina Caputi; A. Cimatti; O. Cucciati; Emanuele Daddi; R. Feldmann; P. Franzetti; B. Garilli; L. Guzzo; O. Ilbert; P. Kampczyk

zCOSMOS is a large-redshift survey that is being undertaken in the COSMOS field using 600 hr of observation with the VIMOS spectrograph on the 8 m VLT. The survey is designed to characterize the environments of COSMOS galaxies from the 100 kpc scales of galaxy groups up to the 100 Mpc scale of the cosmic web and to produce diagnostic information on galaxies and active galactic nuclei. The zCOSMOS survey consists of two parts: (1) zCOSMOSbright, a magnitude-limited I-band I_(AB) < 22.5 sample of about 20,000 galaxies with 0.1 < z < 1.2 covering the whole 1.7 deg^2 COSMOS ACS field, for which the survey parameters at z ~ 0.7 are designed to be directly comparable to those of the 2dFGRS at z ~ 0.1; and (2) zCOSMOS-deep, a survey of approximately 10,000 galaxies selected through color-selection criteria to have 1.4 < z < 3.0, within the central 1 deg^2. This paper describes the survey design and the construction of the target catalogs and briefly outlines the observational program and the data pipeline. In the first observing season, spectra of 1303 zCOSMOS-bright targets and 977 zCOSMOS-deep targets have been obtained. These are briefly analyzed to demonstrate the characteristics that may be expected from zCOSMOS, and particularly zCOSMOS-bright, when it is finally completed between 2008 and 2009. The power of combining spectroscopic and photometric redshifts is demonstrated, especially in correctly identifying the emission line in single-line spectra and in determining which of the less reliable spectroscopic redshifts are correct and which are incorrect. These techniques bring the overall success rate in the zCOSMOS-bright so far to almost 90% and to above 97% in the 0.5 < z < 0.8 redshift range. Our zCOSMOS-deep spectra demonstrate the power of our selection techniques to isolate high-redshift galaxies at 1.4 < z < 3.0 and of VIMOS to measure their redshifts using ultraviolet absorption lines.


Astrophysical Journal Supplement Series | 2007

The First Release COSMOS Optical and Near-IR Data and Catalog*

P. Capak; H. Aussel; Masaru Ajiki; H. J. McCracken; B. Mobasher; N. Z. Scoville; Patrick Lynn Shopbell; Y. Taniguchi; D. Thompson; S. Tribiano; S. S. Sasaki; A. W. Blain; M. Brusa; C. L. Carilli; A. Comastri; C. M. Carollo; P. Cassata; James W. Colbert; Richard S. Ellis; M. Elvis; Mauro Giavalisco; W. Green; L. Guzzo; G. Hasinger; O. Ilbert; C. D. Impey; Knud Jahnke; J. Kartaltepe; Jean-Paul Kneib; Jin Koda

We present imaging data and photometry for the COSMOS survey in 15 photometric bands between 0.3 and 2.4 μm. These include data taken on the Subaru 8.3 m telescope, the KPNO and CTIO 4 m telescopes, and the CFHT 3.6 m telescope. Special techniques are used to ensure that the relative photometric calibration is better than 1% across the field of view. The absolute photometric accuracy from standard-star measurements is found to be 6%. The absolute calibration is corrected using galaxy spectra, providing colors accurate to 2% or better. Stellar and galaxy colors and counts agree well with the expected values. Finally, as the first step in the scientific analysis of these data we construct panchromatic number counts which confirm that both the geometry of the universe and the galaxy population are evolving.


The Astrophysical Journal | 2011

THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD

A. Karim; E. Schinnerer; Alejo Martinez-Sansigre; M. Sargent; A. van der Wel; H.-W. Rix; O. Ilbert; Vernesa Smolčić; C. L. Carilli; Maurilio Pannella; Anton M. Koekemoer; Eric F. Bell; M. Salvato

We explore the redshift evolution of the specific star formation rate (SSFR) for galaxies of different stellar mass by drawing on a deep 3.6 µm-selected sample of > 10 5 galaxies in the 2 deg 2 COSMOS field. The average star formation rate (SFR) for sub-sets of these galaxies is estimated with stacked 1.4 GHz radio continuum emission. We separately consider the total sample and a subset of galaxies that shows evidence for substantive recent star formation in the rest-frame optical spectral energy distributions. At redshifts 0.2 2, at least for high-mass (M� & 4 � 10 10 M� ) systems where our conclusions are most robust. Our data show that there is a tight correlation with power-law dependence, SSFR / M� � , between


Astrophysical Journal Supplement Series | 2009

The Chandra COSMOS Survey, I: Overview and Point Source Catalog

M. Elvis; F. Civano; C. Vignali; S. Puccetti; F. Fiore; N. Cappelluti; T. Aldcroft; Antonella Fruscione; G. Zamorani; A. Comastri; M. Brusa; R. Gilli; Takamitsu Miyaji; F. Damiani; A. M. Koekemoer; Alexis Finoguenov; H. Brunner; Claudia M. Urry; J. D. Silverman; V. Mainieri; Guenther Hasinger; Richard E. Griffiths; Marcella Carollo; Heng Hao; L. Guzzo; A. W. Blain; Daniela Calzetti; C. L. Carilli; P. Capak; Stefano Ettori

The Chandra COSMOS Survey (C-COSMOS) is a large, 1.8 Ms, Chandra program that has imaged the central 0.5 deg^2 of the COSMOS field (centered at 10 ^h , +02 ^o ) with an effective exposure of ~160 ks, and an outer 0.4 deg^2 area with an effective exposure of ~80 ks. The limiting source detection depths are 1.9 × 10^(–16) erg cm^(–2) s^(–1) in the soft (0.5-2 keV) band, 7.3 × 10^(–16) erg cm^(–2) s^(–1) in the hard (2-10 keV) band, and 5.7 × 10^(–16) erg cm^(–2) s^(–1) in the full (0.5-10 keV) band. Here we describe the strategy, design, and execution of the C-COSMOS survey, and present the catalog of 1761 point sources detected at a probability of being spurious of <2 × 10^(–5) (1655 in the full, 1340 in the soft, and 1017 in the hard bands). By using a grid of 36 heavily (~50%) overlapping pointing positions with the ACIS-I imager, a remarkably uniform (±12%) exposure across the inner 0.5 deg^2 field was obtained, leading to a sharply defined lower flux limit. The widely different point-spread functions obtained in each exposure at each point in the field required a novel source detection method, because of the overlapping tiling strategy, which is described in a companion paper. This method produced reliable sources down to a 7-12 counts, as verified by the resulting logN-logS curve, with subarcsecond positions, enabling optical and infrared identifications of virtually all sources, as reported in a second companion paper. The full catalog is described here in detail and is available online.


The Astrophysical Journal | 2011

CALIBRATING EXTINCTION-FREE STAR FORMATION RATE DIAGNOSTICS WITH 33 GHz FREE-FREE EMISSION IN NGC 6946

E. J. Murphy; J. J. Condon; E. Schinnerer; Robert C. Kennicutt; D. Calzetti; Lee Armus; G. Helou; Jean L. Turner; G. Aniano; P. Beirão; Alberto D. Bolatto; Bernhard R. Brandl; Kevin V. Croxall; Daniel A. Dale; J. Donovan Meyer; B. T. Draine; C. W. Engelbracht; L. K. Hunt; Cai-Na Hao; Jin Koda; H. Roussel; Ramin A. Skibba; J.-D. T. Smith

Using free-free emission measured in the Ka band (26-40 GHz) for 10 star-forming regions in the nearby galaxy NGC 6946, including its starbursting nucleus, we compare a number of star formation rate (SFR) diagnostics that are typically considered to be unaffected by interstellar extinction. These diagnostics include non-thermal radio (i.e., 1.4 GHz), total infrared (IR; 8-1000 μm), and warm dust (i.e., 24 μm) emission, along with hybrid indicators that attempt to account for obscured and unobscured emission from star-forming regions including Hα + 24 μm and UV + IR measurements. The assumption is made that the 33 GHz free-free emission provides the most accurate measure of the current SFR. Among the extranuclear star-forming regions, the 24 μm, Hα + 24 μm, and UV + IR SFR calibrations are in good agreement with the 33 GHz free-free SFRs. However, each of the SFR calibrations relying on some form of dust emission overestimates the nuclear SFR by a factor of ~2 relative to the 33 GHz free-free SFR. This is more likely the result of excess dust heating through an accumulation of non-ionizing stars associated with an extended episode of star formation in the nucleus rather than increased competition for ionizing photons by dust. SFR calibrations using the non-thermal radio continuum yield values which only agree with the 33 GHz free-free SFRs for the nucleus and underestimate the SFRs from the extranuclear star-forming regions by an average factor of ~2 and ~4-5 before and after subtracting local background emission, respectively. This result likely arises from the cosmic-ray (CR) electrons decaying within the starburst region with negligible escape, whereas the transient nature of star formation in the young extranuclear star-forming complexes allows for CR electrons to diffuse significantly further than dust-heating photons, resulting in an underestimate of the true SFR. Finally, we find that the SFRs estimated using the total 33 GHz flux density appear to agree well with those estimated using free-free emission due to the large thermal fractions present at these frequencies even when local diffuse backgrounds are not removed. Thus, rest-frame 33 GHz observations may act as a reliable method to measure the SFRs of galaxies at increasingly high redshift without the need of ancillary radio data to account for the non-thermal emission.


The Astrophysical Journal | 2010

THE XMM-NEWTON WIDE-FIELD SURVEY IN THE COSMOS FIELD (XMM-COSMOS): DEMOGRAPHY AND MULTIWAVELENGTH PROPERTIES OF OBSCURED AND UNOBSCURED LUMINOUS ACTIVE GALACTIC NUCLEI*

M. Brusa; F. Civano; A. Comastri; Takamitsu Miyaji; M. Salvato; G. Zamorani; N. Cappelluti; F. Fiore; G. Hasinger; V. Mainieri; Andrea Merloni; A. Bongiorno; P. Capak; M. Elvis; R. Gilli; Heng Hao; Knud Jahnke; Anton M. Koekemoer; O. Ilbert; E. Le Floc'h; E. Lusso; M. Mignoli; E. Schinnerer; J. D. Silverman; Ezequiel Treister; J. D. Trump; C. Vignali; M. Zamojski; T. Aldcroft; H. Aussel

We report the final optical identifications of the medium-depth (~60 ksec), contiguous (2 deg^2) XMM-Newton survey of the COSMOS field. XMM-Newton has detected ~800 X-ray sources down to limiting fluxes of ~5x10^{-16}, ~3x10^{-15}, and ~7x10^{-15} erg/cm2/s in the 0.5-2 keV, 2-10 keV and 5-10 keV bands, respectively. The work is complemented by an extensive collection of multi-wavelength data from 24 micron to UV, available from the COSMOS survey, for each of the X-ray sources, including spectroscopic redshifts for ~50% of the sample, and high-quality photometric redshifts for the rest. The XMM and multiwavelength flux limits are well matched: 1760 (98%) of the X-ray sources have optical counterparts, 1711 (~95%) have IRAC counterparts, and 1394 (~78%) have MIPS 24micron detections. Thanks to the redshift completeness (almost 100%) we were able to constrain the high-luminosity tail of the X-ray luminosity function confirming that the peak of the number density of logL_X>44.5 AGN is at z~2. Spectroscopically-identified obscured and unobscured AGN, as well as normal and starforming galaxies, present well-defined optical and infrared properties. We devised a robust method to identify a sample of ~150 high redshift (z>1), obscured AGN candidates for which optical spectroscopy is not available. We were able to determine that the fraction of the obscured AGN population at the highest (L_X>10^{44} erg s^{-1}) X-ray luminosity is ~15-30% when selection effects are taken into account, providing an important observational constraint for X-ray background synthesis. We studied in detail the optical spectrum and the overall spectral energy distribution of a prototypical Type 2 QSO, caught in a stage transitioning from being starburst dominated to AGN dominated, which was possible to isolate only thanks to the combination of X-ray and infrared observations.


The Astrophysical Journal | 2013

The CO-to-H2 Conversion Factor and Dust-to-gas Ratio on Kiloparsec Scales in Nearby Galaxies

Karin Sandstrom; Adam K. Leroy; F. Walter; Alberto D. Bolatto; K. V. Croxall; B. T. Draine; C. D. Wilson; Mark G. Wolfire; D. Calzetti; Robert C. Kennicutt; G. Aniano; J. Donovan Meyer; A. Usero; Frank Bigiel; Elias Brinks; W. J. G. de Blok; Alison F. Crocker; Daniel A. Dale; C. W. Engelbracht; M. Galametz; Brent Groves; L. K. Hunt; Jin Koda; K. Kreckel; H. Linz; Sharon E. Meidt; E. Pellegrini; Hans-Walter Rix; H. Roussel; E. Schinnerer

We present ~kiloparsec spatial resolution maps of the CO-to-H_2 conversion factor (α_(CO)) and dust-to-gas ratio (DGR) in 26 nearby, star-forming galaxies. We have simultaneously solved for α_(CO) and the DGR by assuming that the DGR is approximately constant on kiloparsec scales. With this assumption, we can combine maps of dust mass surface density, CO-integrated intensity, and H I column density to solve for both αCO and the DGR with no assumptions about their value or dependence on metallicity or other parameters. Such a study has just become possible with the availability of high-resolution far-IR maps from the Herschel key program KINGFISH, ^(12)CO J = (2-1) maps from the IRAM 30 m large program HERACLES, and H I 21 cm line maps from THINGS. We use a fixed ratio between the (2-1) and (1-0) lines to present our α_(CO) results on the more typically used ^(12)CO J = (1-0) scale and show using literature measurements that variations in the line ratio do not affect our results. In total, we derive 782 individual solutions for α_(CO) and the DGR. On average, α_(CO) = 3.1 M_☉ pc^(–2) (K km s^(–1))^(–1) for our sample with a standard deviation of 0.3 dex. Within galaxies, we observe a generally flat profile of α_(CO) as a function of galactocentric radius. However, most galaxies exhibit a lower α_(CO) value in the central kiloparsec—a factor of ~2 below the galaxy mean, on average. In some cases, the central α_(CO) value can be factors of 5-10 below the standard Milky Way (MW) value of α_(CO,MW) = 4.4 M_☉ pc^(–2) (K km s^(–1))^(–1). While for α_(CO) we find only weak correlations with metallicity, the DGR is well-correlated with metallicity, with an approximately linear slope. Finally, we present several recommendations for choosing an appropriate α_(CO) for studies of nearby galaxies.


The Astrophysical Journal | 2008

Evolution of the Bar Fraction in COSMOS: Quantifying the Assembly of the Hubble Sequence

Kartik Sheth; Debra Meloy Elmegreen; Bruce G. Elmegreen; P. Capak; Roberto G. Abraham; E. Athanassoula; Richard S. Ellis; B. Mobasher; M. Salvato; E. Schinnerer; Nicholas Z. Scoville; Lori Spalsbury; Linda E. Strubbe; Marcella Carollo; Michael R. Rich; Andrew A. West

We have analyzed the redshift-dependent fraction of galactic bars over 0:2 < z < 0:84 in 2157 luminous face-on spiral galaxies from the COSMOS 2 deg 2 field. Our sample is an order of magnitude larger than that used in any previous investigation,and is based onsubstantially deeper imaging data thanthat available from earlier wide-area studies of high-redshift galaxy morphology. We find that the fraction of barred spirals declines rapidly with redshift. Whereas in the local universe about 65% of luminous spiral galaxies contain bars (SB+SAB), at z � 0:84 this fraction drops to about20%.Overthisredshiftrangethefractionof strongbars(SBs)dropsfromabout30%tounder10%.Itisclearthat when the universe was half its present age, the census of galaxies on the Hubble sequence was fundamentally different fromthatof thepresentday.Amajorcluetounderstandingthisphenomenonhasalsoemergedfromouranalysis,which shows thatthe bar fractioninspiralgalaxiesisa strongfunctionof stellar mass, integratedcolor and bulge prominence. The bar fraction in very massive, luminous spirals is about constant out to z � 0:84, whereas for the low-mass, blue spirals it declines significantly with redshift beyond z ¼ 0:3. There is also a slight preference for bars in bulge-dominated systems at high redshifts that may be an important clue toward the coevolution of bars, bulges, and black holes. Our results thus haveimportant ramifications for the processes responsible forgalacticdownsizing, suggestingthatmassive galaxies matured early in a dynamical sense, and not just as a result of the regulation of their star formation rate. Subject headingg galaxies: evolution — galaxies: general — galaxies: high-redshift — galaxies: spiral — galaxies: structure


Publications of the Astronomical Society of the Pacific | 2011

KINGFISH—Key Insights on Nearby Galaxies: A Far-Infrared Survey with Herschel: Survey Description and Image Atlas

Robert C. Kennicutt; D. Calzetti; G. Aniano; P. N. Appleton; Lee Armus; P. Beirão; Alberto D. Bolatto; Bernhard R. Brandl; Alison F. Crocker; K. V. Croxall; Daniel A. Dale; J. Dononvan Meyer; B. T. Draine; C. W. Engelbracht; M. Galametz; Karl D. Gordon; Brent Groves; Cai-Na Hao; G. Helou; Joannah L. Hinz; L. K. Hunt; Barbara Johnson; Jin Koda; Oliver Krause; Adam K. Leroy; Yuejin Li; Sharon E. Meidt; Edward Montiel; E. J. Murphy; Nurur Rahman

The KINGFISH project (Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel) is an imaging and spectroscopic survey of 61 nearby (d < 30 Mpc) galaxies, chosen to cover a wide range of galaxy properties and local interstellar medium (ISM) environments found in the nearby universe. Its broad goals are to characterize the ISM of present-day galaxies, the heating and cooling of their gaseous and dust components, and to better understand the physical processes linking star formation and the ISM. KINGFISH is a direct descendant of the Spitzer Infrared Nearby Galaxies Survey (SINGS), which produced complete Spitzer imaging and spectroscopic mapping and a comprehensive set of multiwavelength ancillary observations for the sample. The Herschel imaging consists of complete maps for the galaxies at 70, 100, 160, 250, 350, and 500 μm. The spectral line imaging of the principal atomic ISM cooling lines ([O I] 63 μm, [O III] 88 μm, [N II] 122,205 μm, and [C II] 158 μm) covers the subregions in the centers and disks that already have been mapped in the mid-infrared with Spitzer. The KINGFISH and SINGS multiwavelength data sets combined provide panchromatic mapping of the galaxies sufficient to resolve individual star-forming regions, and tracing the important heating and cooling channels of the ISM, across a wide range of local extragalactic ISM environments. This article summarizes the scientific strategy for KINGFISH, the properties of the galaxy sample, the observing strategy, and data processing and products. It also presents a combined Spitzer and Herschel image atlas for the KINGFISH galaxies, covering the wavelength range 3.6–500 μm. All imaging and spectroscopy data products will be released to the Herschel user-generated product archives.

Collaboration


Dive into the E. Schinnerer's collaboration.

Top Co-Authors

Avatar

P. Capak

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Z. Scoville

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

C. L. Carilli

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anton M. Koekemoer

Space Telescope Science Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

E. J. Murphy

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge