Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Schisano is active.

Publication


Featured researches published by E. Schisano.


The Astrophysical Journal | 2011

A 100 pc ELLIPTICAL AND TWISTED RING OF COLD AND DENSE MOLECULAR CLOUDS REVEALED BY HERSCHEL AROUND THE GALACTIC CENTER

S. Molinari; John Bally; Alberto Noriega-Crespo; M. Compiegne; J.-P. Bernard; D. Paradis; P. Martin; L. Testi; M. J. Barlow; T. J. T. Moore; R. Plume; B. M. Swinyard; A. Zavagno; L. Calzoletti; A. M. di Giorgio; D. Elia; F. Faustini; P. Natoli; M. Pestalozzi; S. Pezzuto; F. Piacentini; G. Polenta; D. Polychroni; E. Schisano; A. Traficante; M. Veneziani; Cara Battersby; Michael G. Burton; Sean J. Carey; Yasuo Fukui

Thermal images of cold dust in the Central Molecular Zone of the Milky Way, obtained with the far-infrared cameras on board the Herschel satellite, reveal a similar to 3 x 10(7) M-circle dot ring of dense and cold clouds orbiting the Galactic center. Using a simple toy model, an elliptical shape having semi-major axes of 100 and 60 pc is deduced. The major axis of this 100 pc ring is inclined by about 40 degrees with respect to the plane of the sky and is oriented perpendicular to the major axes of the Galactic Bar. The 100 pc ring appears to trace the system of stable x(2) orbits predicted for the barred Galactic potential. Sgr A* is displaced with respect to the geometrical center of symmetry of the ring. The ring is twisted and its morphology suggests a flattening ratio of 2 for the Galactic potential, which is in good agreement with the bulge flattening ratio derived from the 2MASS data.


Monthly Notices of the Royal Astronomical Society | 2013

Variations in the Galactic star formation rate and density thresholds for star formation

S. N. Longmore; John Bally; L. Testi; C. R. Purcell; A. J. Walsh; E. Bressert; M. Pestalozzi; S. Molinari; Jürgen Ott; Luca Cortese; Cara Battersby; Norman Murray; Eve J. Lee; J. M. D. Kruijssen; E. Schisano; D. Elia

The conversion of gas into stars is a fundamental process in astrophysics and cosmology. Stars are known to form from the gravitational collapse of dense clumps in interstellar molecular clouds, and it has been proposed that the resulting star formation rate is proportional to either the amount of mass above a threshold gas surface density, or the gas volume density. These star formation prescriptions appear to hold in nearby molecular clouds in our Milky Way Galaxys disc as well as in distant galaxies where the star formation rates are often much larger. The inner 500 pc of our Galaxy, the Central Molecular Zone (CMZ), contains the largest concentration of dense, high-surface density molecular gas in the Milky Way, providing an environment where the validity of star formation prescriptions can be tested. Here, we show that by several measures, the current star formation rate in the CMZ is an order-of-magnitude lower than the rates predicted by the currently accepted prescriptions. In particular, the region 1 degrees several 10(3) cm(-3)) molecular gas - enough to form 1000 Orion-like clusters - but the present-day star formation rate within this gas is only equivalent to that in Orion. In addition to density, another property of molecular clouds must be included in the star formation prescription to predict the star formation rate in a given mass of molecular gas. We discuss which physical mechanisms might be responsible for suppressing star formation in the CMZ.


Astronomy and Astrophysics | 2012

The spine of the swan: a Herschel study of the DR21 ridge and filaments in Cygnus X

M. Hennemann; F. Motte; N. Schneider; P. Didelon; T. Hill; D. Arzoumanian; Sylvain Bontemps; T. Csengeri; P. André; V. Könyves; F. Louvet; A. Marston; A. Men’shchikov; V. Minier; Q. Nguyen Luong; P. Palmeirim; Nicolas Peretto; Marc Sauvage; A. Zavagno; L. D. Anderson; J.-Ph. Bernard; J. Di Francesco; D. Elia; J. Z. Li; P. G. Martin; S. Molinari; S. Pezzuto; D. Russeil; K. L. J. Rygl; E. Schisano

In order to characterise the cloud structures responsible for the formation of high-mass stars, we present Herschel observations of the DR21 environment. Maps of the column density and dust temperature unveil the structure of the DR21 ridge and several connected filaments. The ridge has column densities larger than 1e23/cm^2 over a region of 2.3 pc^2. It shows substructured column density profiles and branching into two major filaments in the north. The masses in the studied filaments range between 130 and 1400 Msun whereas the mass in the ridge is 15000 Msun. The accretion of these filaments onto the DR21 ridge, suggested by a previous molecular line study, could provide a continuous mass inflow to the ridge. In contrast to the striations seen in e.g., the Taurus region, these filaments are gravitationally unstable and form cores and protostars. These cores formed in the filaments potentially fall into the ridge. Both inflow and collisions of cores could be important to drive the observed high-mass star formation. The evolutionary gradient of star formation running from DR21 in the south to the northern branching is traced by decreasing dust temperature. This evolution and the ridge structure can be explained by two main filamentary components of the ridge that merged first in the south.


Astronomy and Astrophysics | 2015

A census of dense cores in the Aquila cloud complex: SPIRE/PACS observations from the Herschel Gould Belt survey

V. Könyves; P. André; A. Men'shchikov; P. Palmeirim; D. Arzoumanian; N. Schneider; A. Roy; P. Didelon; A. Maury; Yoshito Shimajiri; J. Di Francesco; Sylvain Bontemps; Nicolas Peretto; M. Benedettini; J.-Ph. Bernard; D. Elia; Matthew James Griffin; T. Hill; Jason Matthew Kirk; B. Ladjelate; Kenneth A. Marsh; P. G. Martin; F. Motte; Q. Nguyen Luong; S. Pezzuto; H. Roussel; K. L. J. Rygl; S. Sadavoy; E. Schisano; L. Spinoglio

We present and discuss the results of the Herschel Gould Belt survey (HGBS) observations in an ~11 deg2 area of the Aquila molecular cloud complex at d ~ 260 pc, imaged with the SPIRE and PACS photometric cameras in parallel mode from 70 μm to 500 μm. Using the multi-scale, multi-wavelength source extraction algorithm getsources, we identify a complete sample of starless dense cores and embedded (Class 0-I) protostars in this region, and analyze their global properties and spatial distributions. We find a total of 651 starless cores, ~60% ± 10% of which are gravitationally bound prestellar cores, and they will likely form stars inthe future. We also detect 58 protostellar cores. The core mass function (CMF) derived for the large population of prestellar cores is very similar in shape to the stellar initial mass function (IMF), confirming earlier findings on a much stronger statistical basis and supporting the view that there is a close physical link between the stellar IMF and the prestellar CMF. The global shift in mass scale observed between the CMF and the IMF is consistent with a typical star formation efficiency of ~40% at the level of an individual core. By comparing the numbers of starless cores in various density bins to the number of young stellar objects (YSOs), we estimate that the lifetime of prestellar cores is ~1 Myr, which is typically ~4 times longer than the core free-fall time, and that it decreases with average core density. We find a strong correlation between the spatial distribution of prestellar cores and the densest filaments observed in the Aquila complex. About 90% of the Herschel-identified prestellar cores are located above a background column density corresponding to AV ~ 7, and ~75% of them lie within filamentary structures with supercritical masses per unit length ≳16 M⊙/pc. These findings support a picture wherein the cores making up the peak of the CMF (and probably responsible for the base of the IMF) result primarily from the gravitational fragmentation of marginally supercritical filaments. Given that filaments appear to dominate the mass budget of dense gas at AV> 7, our findings also suggest that the physics of prestellar core formation within filaments is responsible for a characteristic “efficiency” for the star formation process in dense gas.


Astronomy and Astrophysics | 2011

Source extraction and photometry for the far-infrared and sub-millimeter continuum in the presence of complex backgrounds

S. Molinari; E. Schisano; F. Faustini; M. Pestalozzi; A. M. di Giorgio; S. J. Liu

Context. Large-scale astronomical surveys from ground-based as well as space-borne facilities have always posed significant challenges concerning the problem of automatic extraction and flux estimate of sources. The recent explosion of surveys in the mid-and far infrared, as well as in the sub-millimeter, brings an increase to the complexity of the source extraction and photometry task because of the extraordinary level of foreground/background due to the thermal emission of cosmic cold dust. The maximum complexity is likely reached in star forming regions and on the Galactic Plane, where the emission from cold dust is dominant. Aims. We present a new method for detecting and measuring compact sources in conditions of intense, and highly variable, fore/background. Methods. While all most commonly used packages carry out the source detection over the signal image, our proposed method builds from the measured image a ”curvature” image by double-di erentiation in four di erent directions. In this way point-like as well as resolved, yet relatively compact, objects are easily revealed while the slower varying fore/background is greatly diminished. Candidate sources are then identified by looking for pixels where the curvature exceeds, in absolute terms, a given threshold; the methodology easily allows us to pinpoint breakpoints in the source brightness profile and then derive reliable guesses for the sources extent. Identified peaks are fit with 2D elliptical Gaussians plus an underlying planar inclined plateau, with mild constraints on size and orientation. Mutually contaminating sources are fit with multiple Gaussians simultaneously using flexible constraints. Results. We ran our method on simulated large-scale fields with 1000 sources of di erent peak flux overlaid on a realistic realization of di use background. We find detection rates in excess of 90% for sources with peak fluxes above the 3 signal noise limit; for about 80% of the sources the recovered peak fluxes are within 30% of their input values.


Astronomy and Astrophysics | 2012

Herschel observations of B1-bS and B1-bN: two first hydrostatic core candidates in the Perseus star-forming cloud

S. Pezzuto; D. Elia; E. Schisano; F. Strafella; J. Di Francesco; S. Sadavoy; P. André; M. Benedettini; J.-P. Bernard; A. M. di Giorgio; A. Facchini; M. Hennemann; T. Hill; V. Könyves; S. Molinari; F. Motte; Q. Nguyen-Luong; Nicolas Peretto; M. Pestalozzi; D. Polychroni; K. L. J. Rygl; P. Saraceno; N. Schneider; L. Spinoglio; L. Testi; Derek Ward-Thompson; G. J. White

We report far-infrared Herschel observations obtained between 70 μm and 500 μm of two star-forming dusty condensations, [HKM99] B1-bS and [HKM99] B1-bN, in the B1 region of the Perseus star-forming cloud. In the western part of the Perseus cloud, B1-bS is the only source detected in all six PACS and SPIRE photometric bands, but it is not visible in the Spitzer map at 24 μm. B1-bN is clearly detected between 100 μm and 250 μm. We have fitted the spectral energy distributions of these sources to derive their physical properties, and find that a simple greybody model fails to reproduce the observed spectral energy distributions. At least a two-component model is required, consisting of a central source surrounded by a dusty envelope. The properties derived from the fit, however, suggest that the central source is not a Class 0 object. We then conclude that while B1-bS and B1-bN appear to be more evolved than a pre-stellar core, the best-fit models suggest that their central objects are younger than a Class 0 source. Hence, they may be good candidates to be examples of the first hydrostatic core phase. The projected distance between B1-bS and B1-bN is a few Jeans lengths. If their physical separation is close to this value, this pair would allow studying the mutual interactions between two forming stars at a very early stage of their evolution.


Astronomy and Astrophysics | 2010

A Herschel study of YSO evolutionary stages and formation timelines in two fields of the Hi-GAL survey

D. Elia; E. Schisano; S. Molinari; Thomas P. Robitaille; Daniel Anglés-Alcázar; John Bally; Cara Battersby; M. Benedettini; N. Billot; L. Calzoletti; A. M. di Giorgio; F. Faustini; J. Z. Li; P. Martin; Larry Morgan; F. Motte; J. C. Mottram; P. Natoli; Luca Olmi; R. Paladini; F. Piacentini; M. Pestalozzi; S. Pezzuto; D. Polychroni; M. D. Smith; F. Strafella; Guy S. Stringfellow; L. Testi; M. A. Thompson; A. Traficante

We present a first study of the star-forming compact dust condensations revealed by Herschel in the two 2° × 2° Galactic Plane fields centered at [l, b] = [30°, 0°] and [l, b] =[59°, 0°] , respectively, and observed during the science demonstration phase for the Herschel Infrared GALactic plane survey (Hi-GAL) key-project. Compact source catalogs extracted for the two fields in the five Hi-GAL bands (70, 160, 250, 350 and 500 μm) were merged based on simple criteria of positional association and spectral energy distribution (SED) consistency into a final catalog which contains only coherent SEDs with counterparts in at least three adjacent Herschel bands. These final source lists contain 528 entries for the l = 30° field, and 444 entries for the = 59° field. The SED coverage has been augmented with ancillary data at 24 μm and 1.1 mm. SED modeling for the subset of 318 and 101 sources (in the two fields, respectively) for which the distance is known was carried out using both a structured star/disk/envelope radiative transfer model and a simple isothermal grey-body. Global parameters like mass, luminosity, temperature and dust properties have been estimated. The L_(bol)/M_(env) ratio spans four orders of magnitudes from values compatible with the pre-protostellar phase to embedded massive zero-age main sequence stars. Sources in the l = 59° field have on average lower L/M, possibly outlining an overall earlier evolutionary stage with respect to the sources in the l = 30° field. Many of these cores are actively forming high-mass stars, although the estimated core surface densities appear to be an order of magnitude below the 1 g cm^(-2) critical threshold for high-mass star formation.


Astronomy and Astrophysics | 2012

The Herschel view of the on-going star formation in the Vela-C molecular cloud

T. Giannini; D. Elia; D. Lorenzetti; S. Molinari; F. Motte; E. Schisano; S. Pezzuto; M. Pestalozzi; A. M. di Giorgio; P. André; T. Hill; M. Benedettini; Sylvain Bontemps; J. Di Francesco; C. Fallscheer; M. Hennemann; Jason M. Kirk; V. Minier; Q. Nguyn Lu'o'ng; D. Polychroni; K. L. J. Rygl; P. Saraceno; N. Schneider; L. Spinoglio; L. Testi; Derek Ward-Thompson; G. J. White

Aims. As part of the Herschel guaranteed time key programme “HOBYS”, we present the PACS and SPIRE photometric survey of the star-forming region Vela-C, one of the nearest sites of low-to-high-mass star formation in the Galactic plane. Our main objectives are to take a census of the cold sources and to derive their mass distribution down to a few solar masses. Methods. Vela-C was observed with PACS and SPIRE in parallel mode at five wavelengths between 70 μm and 500 μm over an area of about 3 square degrees. A photometric catalogue was extracted from the detections in each of the five bands, using a threshold of 5σ over the local background. Out of this catalogue we selected a robust sub-sample of 268 sources, of which ∼75% are cloud clumps (diameter between 0.05 pc and 0.13 pc) and 25% are cores (diameter between 0.025 pc and 0.05 pc). Their spectral energy distributions (SEDs) were fitted with a modified black body function. We classify 48 sources as protostellar, based on their detection at 70 μm or at shorther wavelengths, and 218 as starless, because of non-detections at 70 μm. For two other sources, we do not provide a secure classification, but suggest they are Class 0 protostars. Results. From the SED fitting we derived key physical parameters (i.e. mass, temperature, bolometric luminosity). Protostellar sources are in general warmer (� T � = 12.8 K) and more compact (� diameter� = 0.040 pc) than starless sources (� T � = 10. 3K ,� diameter� = 0.067 pc). Both these findings can be ascribed to the presence of an internal source(s) of moderate heating, which also causes a temperature gradient and hence a more peaked intensity distribution. Moreover, the reduced dimensions of protostellar sources may indicate that they will not fragment further. A virial analysis of the starless sources gives an upper limit of 90% probability for the sources to be gravitationally bound and therefore prestellar in nature. A luminosity vs. mass diagram of the two populations shows that protostellar sources are in the early accretion phase, while prestellar sources populate a region of the diagram where mass accretion has not started yet. We fitted a power law N(log M) ∝ M −1.1±0.2 to the linear portion of the mass distribution of prestellar sources. This is in between that typical of CO clumps and those of cores in nearby star-forming regions. We interpret this as a result of the inhomogeneity of our sample, which is composed of comparable fractions of clumps and cores.


Monthly Notices of the Royal Astronomical Society | 2015

Large-scale filaments associated with Milky Way spiral arms

Ke Wang; L. Testi; Adam Ginsburg; C. Malcolm Walmsley; S. Molinari; E. Schisano

We are grateful to Mark Reid for discussion on Galactic spiral arms and kinematic distance, and to Phil Myers, Andreas Burkert, Thomas Henning, Henrik Beuther, Sarah Ragan, and John Bally for inspiring discussion. We appreciate an anonymous referees valuable comments that helped clarify the manuscript. KW and AG acknowledge support from the ESO fellowship. This study is part of the research project WA3628-1/1 led by KW through the DFG priority programme 1573 (‘Physics of the Interstellar Medium’). Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. This publication is based on data acquired with the APEX through ESO programme 092.C-0713. APEX is a collaboration between the Max-Planck-Institut fur Radioastronomie, the European Southern Observatory, and the Onsala Space Observatory. This publication makes use of molecular line data from the Boston University-FCRAO GRS. The GRS is a joint project of Boston University and Five College Radio Astronomy Observatory, funded by the National Science Foundation under grants AST-9800334, AST-0098562, and AST-0100793. This research made use of open-source python packages astropy (astropy.org), glue (glueviz.org) and pvextractor ( pvextractor.readthedocs.org ).


Monthly Notices of the Royal Astronomical Society | 2013

First results from the Herschel Gould Belt Survey in Taurus

Jason M. Kirk; Derek Ward-Thompson; P. Palmeirim; P. André; Matthew Joseph Griffin; Peter Charles Hargrave; V. Könyves; J.-P. Bernard; D. Nutter; B. Sibthorpe; J. Di Francesco; Alain Abergel; D. Arzoumanian; M. Benedettini; Sylvain Bontemps; D. Elia; M. Hennemann; T. Hill; A. Men'shchikov; F. Motte; Q. Nguyen-Luong; Nicolas Peretto; S. Pezzuto; K. L. J. Rygl; S. Sadavoy; E. Schisano; N. Schneider; L. Testi; G. J. White

The whole of the Taurus region (a total area of 52 deg2) has been observed by the Herschel Spectral and Photometric Imaging Receiver (SPIRE) and Photodetector Array Camera and Spectrometer (PACS) instruments at wavelengths of 70, 160, 250, 350 and 500 μm as part of the Herschel Gould Belt Survey. In this paper we present the first results from the part of the Taurus region that includes the Barnard 18 and L1536 clouds. A new source-finding routine, the Cardiff Source-finding AlgoRithm (csar), is introduced, which is loosely based on clumpfind, but that also generates a structure tree, or dendrogram, which can be used to interpret hierarchical clump structure in a complex region. Sources were extracted from the data using the hierarchical version of csar and plotted on a mass–size diagram. We found a hierarchy of objects with sizes in the range 0.024–2.7 pc. Previous studies showed that gravitationally bound prestellar cores and unbound starless clumps appeared in different places on the mass–size diagram. However, it was unclear whether this was due to a lack of instrumental dynamic range or whether they were actually two distinct populations. The excellent sensitivity of Herschel shows that our sources fill the gap in the mass–size plane between starless and pre-stellar cores, and gives the first clear supporting observational evidence for the theory that unbound clumps and (gravitationally bound) prestellar cores are all part of the same population, and hence presumably part of the same evolutionary sequence.

Collaboration


Dive into the E. Schisano's collaboration.

Top Co-Authors

Avatar

S. Molinari

Jet Propulsion Laboratory

View shared research outputs
Top Co-Authors

Avatar

L. Testi

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

T. J. T. Moore

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

N. Schneider

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge