E. Semones
Analysis Group
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Semones.
Life sciences in space research | 2016
John W. Norbury; Walter Schimmerling; Tony C. Slaba; Edouard I. Azzam; Francis F. Badavi; G. Baiocco; E.R. Benton; Veronica Bindi; Eleanor A. Blakely; Steve R. Blattnig; David A. Boothman; Thomas B. Borak; Richard A. Britten; Stan Curtis; Michael Dingfelder; Marco Durante; William S. Dynan; Amelia J. Eisch; S. Robin Elgart; Dudley T. Goodhead; Peter Guida; L. Heilbronn; Christine E. Hellweg; Janice L. Huff; Amy Kronenberg; Chiara La Tessa; Derek I. Lowenstein; J. Miller; Takashi Morita; L. Narici
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation.
Life sciences in space research | 2015
Martin Kroupa; Amir A. Bahadori; Thomas Campbell-Ricketts; A. Empl; S Hoang; John Idarraga-Munoz; Ryan R. Rios; E. Semones; Nicholas Stoffle; Lukas Tlustos; Daniel Turecek; L. Pinsky
Progress in the development of high-performance semiconductor radiation imaging pixel detectors based on technologies developed for use in high-energy physics applications has enabled the development of a completely new generation of compact low-power active dosimeters and area monitors for use in space radiation environments. Such detectors can provide real-time information concerning radiation exposure, along with detailed analysis of the individual particles incident on the active medium. Recent results from the deployment of detectors based on the Timepix from the CERN-based Medipix2 Collaboration on the International Space Station (ISS) are reviewed, along with a glimpse of developments to come. Preliminary results from Orion MPCV Exploration Flight Test 1 are also presented.
Physics in Medicine and Biology | 2011
Amir A. Bahadori; Mary Van Baalen; Mark R Shavers; Charles Dodge; E. Semones; Wesley E. Bolch
The National Aeronautics and Space Administration (NASA) performs organ dosimetry and risk assessment for astronauts using model-normalized measurements of the radiation fields encountered in space. To determine the radiation fields in an organ or tissue of interest, particle transport calculations are performed using self-shielding distributions generated with the computer program CAMERA to represent the human body. CAMERA mathematically traces linear rays (or path lengths) through the computerized anatomical man (CAM) phantom, a computational stylized model developed in the early 1970s with organ and body profiles modeled using solid shapes and scaled to represent the body morphometry of the 1950 50th percentile (PCTL) Air Force male. With the increasing use of voxel phantoms in medical and health physics, a conversion from a mathematical-based to a voxel-based ray-tracing algorithm is warranted. In this study, the voxel-based ray tracer (VoBRaT) is introduced to ray trace voxel phantoms using a modified version of the algorithm first proposed by Siddon (1985 Med. Phys. 12 252-5). After validation, VoBRAT is used to evaluate variations in body self-shielding distributions for NASA phantoms and six University of Florida (UF) hybrid phantoms, scaled to represent the 5th, 50th, and 95th PCTL male and female astronaut body morphometries, which have changed considerably since the inception of CAM. These body self-shielding distributions are used to generate organ dose equivalents and effective doses for five commonly evaluated space radiation environments. It is found that dosimetric differences among the phantoms are greatest for soft radiation spectra and light vehicular shielding.
Advances in Space Research | 2007
M. Casolino; F. Altamura; M. Minori; Piergiorgio Picozza; C. Fuglesang; A. M. Galper; A. V. Popov; V. Benghin; Vladislav Petrov; Aiko Nagamatsu; Thomas Berger; Günther Reitz; Marco Durante; M. Pugliese; Vincenzo Roca; Lembit Sihver; F. A. Cucinotta; E. Semones; M.R. Shavers; V. Guarnieri; C. Lobascio; D. Castagnolo; R. Fortezza
The Alteriss project aims to perform a long term survey of the radiation environment on board the International Space Station. Measurements are being performed with active and passive devices in different locations and orientations of the Russian segment of the station. The goal is to perform a detailed evaluation of the differences in particle fluence and nuclear composition due to different shielding material and attitude of the station. The Sileye-3/Alteino detector is used to identify nuclei up to Iron in the energy range above similar or equal to 60 MeV/n. Several passive dosimeters (TLDs, CR39) are also placed in the same location of Sileye-3 detector. Polyethylene shielding is periodically interposed in front of the detectors to evaluate the effectiveness of shielding on the nuclear component of the cosmic radiation. The project was submitted to ESA in reply to the AO in the Life and Physical Science of 2004 and data taking began in December 2005. Dosimeters and data cards are rotated every 6 months: up to now three launches of dosimeters and data cards have been performed and have been returned with the end of expedition 12 and 13
Space Weather-the International Journal of Research and Applications | 2014
Colin J. Joyce; N. A. Schwadron; Jody K. Wilson; Harlan E. Spence; Justin Christophe Kasper; M. J. Golightly; J. B. Blake; Lawrence W. Townsend; A. W. Case; E. Semones; S. Smith; C. Zeitlin
We expand upon the efforts of Joyce et al. (2013), who computed the modulation potential at the Moon using measurements from the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) instrument on the Lunar Reconnaissance Orbiter (LRO) spacecraft along with data products from the Earth-Moon-Mars Radiation Environment Module (EMMREM). Using the computed modulation potential, we calculate galactic cosmic ray (GCR) dose and dose equivalent rates in the Earth and Mars atmospheres for various altitudes over the course of the LRO mission. While we cannot validate these predictions by directly comparable measurement, we find that our results conform to expectations and are in good agreement with the nearest available measurements and therefore may be used as reasonable estimates for use in efforts in risk assessment in the planning of future space missions as well as in the study of GCRs. PREDICCS (Predictions of radiation from REleASE, EMMREM, and Data Incorporating the CRaTER, COSTEP, and other solar energetic particles measurements) is an online system designed to provide the scientific community with a comprehensive resource on the radiation environments of the inner heliosphere. The data products shown here will be incorporated into PREDICCS in order to further this effort and daily updates will be made available on the PREDICCS website (http://prediccs.sr.unh.edu).
Physics in Medicine and Biology | 2013
Amir A. Bahadori; Tatsuhiko Sato; Tony C. Slaba; Mark R Shavers; E. Semones; Mary Van Baalen; Wesley E. Bolch
NASA currently uses one-dimensional deterministic transport to generate values of the organ dose equivalent needed to calculate stochastic radiation risk following crew space exposures. In this study, organ absorbed doses and dose equivalents are calculated for 50th percentile male and female astronaut phantoms using both the NASA High Charge and Energy Transport Code to perform one-dimensional deterministic transport and the Particle and Heavy Ion Transport Code System to perform three-dimensional Monte Carlo transport. Two measures of radiation risk, effective dose and risk of exposure-induced death (REID) are calculated using the organ dose equivalents resulting from the two methods of radiation transport. For the space radiation environments and simplified shielding configurations considered, small differences (<8%) in the effective dose and REID are found. However, for the galactic cosmic ray (GCR) boundary condition, compensating errors are observed, indicating that comparisons between the integral measurements of complex radiation environments and code calculations can be misleading. Code-to-code benchmarks allow for the comparison of differential quantities, such as secondary particle differential fluence, to provide insight into differences observed in integral quantities for particular components of the GCR spectrum.
ieee aerospace conference | 2012
L. Pinsky; A. Empl; S Hoang; Nicholas Stoffle; J Jakubek; Zdenek Vykydal; D. Turecek; Stanislav Pospisil; Hisashi Kitamura; Ondrej Ploc; Yukio Uchihori; Yasuda Nakahiro; Clifton Amberboy; Jessica Hauss; Kerry Lee; E. Semones; Neal Zapp; Rebecca Parker; David Cooke
Current plans call for two separate missions to deploy Medipix2-Technology-based detectors in space for the first time. NASA is planning to deploy 5 or more Radiation Environment Monitor (REM) units, each of which will contain a Medipix2 TimePix-based detector assembly, on the International Space Station (ISS) during the spring of 2012 as part of a Station Detailed Test Objective (SDTO). These units will be mounted on a single 8-layer printed circuit board containing a USB-based interface. The entire unit will have the form of a typical USB flash-memory device, and the USB interface will provide interactive control and data readout as well as the operating power. Each of the units will be separately plugged into one of the 21 Lenovo® T-61B laptops that are currently onboard the ISS. The purpose of this test is to acquire initial on-orbit data to allow feedback into the design of the next generation of Medipix device, which is intended to support the development of a portable, standalone, wireless and battery-powered personal space radiation dosimeter. The second mission, LUCID (Langton Ultimate Cosmic ray Intensity Detector) is part of a UK outreach project being conducted by the Simon Langton School for Boys in Canterbury, UK. A small instrument containing 5 detector assemblies, also containing the TimePix versions of the Medipix2 technology will be deployed on the upcoming UK TechDemoSat 1 mission, also planned for launch in 2012. These deployments have many similar embedded control software and ground-based analysis software requirements.
Physics in Medicine and Biology | 2012
Amir A. Bahadori; Mary Van Baalen; Mark R Shavers; E. Semones; Wesley E. Bolch
Computational phantoms serve an important role in organ dosimetry and risk assessment performed at the National Aeronautics and Space Administration (NASA). A previous study investigated the impact on organ dose equivalents and effective doses from the use of the University of Florida hybrid adult male (UFHADM) and adult female (UFHADF) phantoms at differing height and weight percentiles versus those given by the two existing NASA phantoms, the computerized anatomical man (CAM) and female (CAF) (Bahadori et al 2011 Phys. Med. Biol. 56 1671-94). In the present study, the UFHADM and UFHADF phantoms of different body sizes were further altered to incorporate the effects of microgravity. Body self-shielding distributions are generated using the voxel-based ray tracer (VoBRaT), and the results are combined with depth dose data from the NASA codes BRYNTRN and HZETRN to yield organ dose equivalents and their rates for a variety of space radiation environments. It is found that while organ dose equivalents are indeed altered by the physiological effects ofmicrogravity, the magnitude of the change in overall risk (indicated by the effective dose) is minimal for the spectra and simplified shielding configurations considered. The results also indicate, however, that UFHADMand UFHADF could be useful in designing dose reduction strategies through optimized positioning of an astronaut during encounters with solar particle events.
Space Weather-the International Journal of Research and Applications | 2018
Thomas Berger; Daniel Matthiä; S. Burmeister; Ryan R. Rios; K. T. Lee; E. Semones; D. M. Hassler; Nicholas N. Stoffle; C. Zeitlin
The nominal radiation environment in Low Earth Orbit (LEO), especially for the International Space Station (ISS), is dominated by two sources. The first is galactic cosmic radiation (GCR) which is modulated by the interplanetary and the Earth‟s magnetic fields and the second is trapped radiation in the form of the Van Allen Belts. The trapped radiation inside the ISS is mostly due to protons of the inner radiation belt. In addition to these sources sporadic Solar Particle Events (SPEs) can produce high doses inside and outside the ISS, depending on the intensity and energy spectrum of the event. Before 2017, the last SPE observed inside the ISS with relevant radiation detectors occurred in May 2012. Even though we are currently approaching the next solar minimum, an SPE was observed in September 2017, which was a) a Ground Level Enhancement (GLE 72); b) measured with various radiation detector systems on-board the ISS and c) observed on the surface of Mars. This paper gives an overview of the 10 September 2017 SPE measured with the DOSIS 3D-DOSTEL and the ISS-RAD (Radiation Assessment Detector) instruments, both located at this time in close proximity to each other in the Columbus Laboratory of the ISS. The additional dose received during the SPE, was 146.2 µGy in Si as measured by ISS-RAD and 67.8 µGy in Si as measured by the DOSIS 3D-DOSTEL instruments. In comparison, the dose measured on the surface of Mars with the MSL-RAD (Mars Science Laboratory) instrument accounted to 418 µGy in Si.
ieee aerospace conference | 2014
L. Pinsky; S Hoang; John Idarraga-Munoz; Martin Kroupa; Nicholas Stoffle; Amir A. Bahadori; E. Semones; Hisashi Kitamura; Satoshi Kodaira; J. Jakubek; Zdenek Vykydal; D. Turecek; S. Pospisil
On October 16, 2012 five active radiation detectors employing the Timepix version of the technology developed by the CERN-based Medipix2 Collaboration were deployed on-board the International Space Station (ISS) using simple USB interfaces to the existing ISS laptops for power, control and readout. These devices successfully demonstrated the capabilities of this technology by providing reliable dose and dose-equivalent information based on a track-by-track analysis. Several issues were identified and solutions to adjust for them have been included in the analysis. These include items such as the need to identify nuclear interactions in the Silicon sensor, and to separate penetrating from stopping tracks. The wide effective range in fluence and particle type of this technology was also verified through the highest rates seen during the South Atlantic Anomaly passes and the heavy ions nominally seen in the Galactic Cosmic Rays. Corrections for detector response saturation effects were also successfully implemented as verified by reference to ground-based accelerator data taken at the Heavy-Ion Medical Accelerator Center (HIMAC) facility at the National Institute for Radiological Sciences in Japan, and at the NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory in New York. Flight hardware has been produced that will be flown on the first launch of the new Orion spacecraft, and flight hardware development is ongoing to accommodate the next generation of this technology as a baseline for radiation monitoring and dosimetry on future operational manned missions.