E. Simioni
INAF
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Simioni.
Nature | 2015
Matteo Massironi; E. Simioni; Francesco Marzari; G. Cremonese; Lorenza Giacomini; M. Pajola; L. Jorda; Giampiero Naletto; S. C. Lowry; M. R. El-Maarry; Frank Preusker; Frank Scholten; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Michael F. A'Hearn; Jessica Agarwal; Anne-Thérèse Auger; M. Antonella Barucci; Bertini Ivano; Sebastien Besse; D. Bodewits; Claire Capanna; Vania Da Deppo; B. Davidsson; Stefano Debei
The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov–Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet’s major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov–Gerasimenko is an accreted body of two distinct objects with ‘onion-like’ stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov–Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.
Astronomy and Astrophysics | 2015
M. Pajola; Jean-Bapiste Vincent; C. Güttler; J.-C. Lee; I. Bertini; Matteo Massironi; E. Simioni; Francesco Marzari; Lorenza Giacomini; Alice Lucchetti; Cesare Barbieri; G. Cremonese; Giampiero Naletto; Antoine Pommerol; M. R. El-Maarry; Sebastien Besse; M. Küppers; Fiorangela La Forgia; Monica Lazzarin; Nicholas Thomas; Anne-Thérèse Auger; H. Sierks; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; Michael F. A'Hearn; Maria Antonietta Barucci
We derive for the first time the size-frequency distribution of boulders on a comet, 67P/Churyumov-Gerasimenko (67P), computed from the images taken by the Rosetta/OSIRIS imaging system. We highlight the possible physical processes that lead to these boulder size distributions. We used images acquired by the OSIRIS Narrow Angle Camera, NAC, on 5 and 6 August 2014. The scale of these images (2.44−2.03 m/px) is such that boulders ≥7 m can be identified and manually extracted from the datasets with the software ArcGIS. We derived both global and localized size-frequency distributions. The three-pixel sampling detection, coupled with the favorable shadowing of the surface (observation phase angle ranging from 48◦ to 53◦ ), enables unequivocally detecting boulders scattered all over the illuminated side of 67P. We identify 3546 boulders larger than 7 m on the imaged surface (36.4 km 2 ), with a global number density of nearly 100/km 2 and a cumulative size-frequency distribution represented by a power-law with index of −3.6 +0.2/−0.3. The two lobes of 67P appear to have slightly different distributions, with an index of −3.5 +0.2/−0.3 for the main lobe (body) and −4.0 +0.3/−0.2 for the small lobe (head). The steeper distribution of the small lobe might be due to a more pervasive fracturing. The difference of the distribution for the connecting region (neck) is much more significant, with an index value of −2.2 +0.2/−0.2. We propose that the boulder field located in the neck area is the result of blocks falling from the contiguous Hathor cliff. The lower slope of the size-frequency distribution we see today in the neck area might be due to the concurrent processes acting on the smallest boulders, such as i) disintegration or fragmentation and vanishing through sublimation; ii) uplifting by gas drag and consequent redistribution; and iii) burial beneath a debris blanket. We also derived the cumulative size-frequency distribution per km 2 of localized areas on 67P. By comparing the cumulative size-frequency distributions of similar geomorphological settings, we derived similar power-law index values. This suggests that despite the selected locations on different and often opposite sides of the comet, similar sublimation or activity processes, pit formation or collapses, as well as thermal stresses or fracturing events occurred on multiple areas of the comet, shaping its surface into the appearance we see today.
Astronomy and Astrophysics | 2015
F. La Forgia; Lorenza Giacomini; M. Lazzarin; M. Massironi; N. Oklay; Frank Scholten; M. Pajola; I. Bertini; G. Cremonese; Cesare Barbieri; Giampiero Naletto; E. Simioni; Frank Preusker; Nicolas Thomas; H. Sierks; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; A.-T. Auger; Michael F. A’Hearn; M. A. Barucci; Sebastien Besse; D. Bodewits; V. Da Deppo; B. Davidsson; Stefano Debei; M. De Cecco
On 12 November 2014 the European mission Rosetta succeeded in delivering a lander, named Philae, on the surface of one of the smallest, low-gravity and most primitive bodies of the solar system, the comet 67P/Churyumov-Gerasimenko (67P). Aims. The aim of this paper is to provide a comprehensive geomorphological and spectrophotometric analysis of Philae’s landing site (Agilkia) to give an essential framework for the interpretation of its in situ measurements. Methods. OSIRIS images, coupled with gravitational slopes derived from the 3D shape model based on stereo-photogrammetry were used to interpret the geomorphology of the site. We adopted the Hapke model, using previously derived parameters, to photometrically correct the images in orange filter (649.2 nm). The best approximation to the Hapke model, given by the Akimov parameter-less function, was used to correct the reflectance for the effects of viewing and illumination conditions in the other filters. Spectral analyses on coregistered color cubes were used to retrieve spectrophotometric properties. Results. The landing site shows an average normal albedo of 6.7% in the orange filter with variations of ∼15% and a global featureless spectrum with an average red spectral slope of 15.2%/100 nm between 480.7 nm (blue filter) and 882.1 nm (near-IR filter). The spatial analysis shows a well-established correlation between the geomorphological units and the photometric characteristics of the surface. In particular, smooth deposits have the highest reflectance a bluer spectrum than the outcropping material across the area. Conclusions. The featureless spectrum and the redness of the material are compatible with the results by other instruments that have suggested an organic composition. The observed small spectral variegation could be due to grain size effects. However, the combination of photometric and spectral variegation suggests that a compositional differentiation is more likely. This might be tentatively interpreted as the effect of the efficient dust-transport processes acting on 67P. High-activity regions might be the original sources for smooth fine-grained materials that then covered Agilkia as a consequence of airfall of residual material. More observations performed by OSIRIS as the comet approaches the Sun would help interpreting the processes that work at shaping the landing site and the overall nucleus.
Astronomy and Astrophysics | 2016
G. Cremonese; E. Simioni; Roberto Ragazzoni; I. Bertini; Fiorangela La Forgia; M. Pajola; N. Oklay; S. Fornasier; Monica Lazzarin; Alice Lucchetti; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Michael F. A'Hearn; Jessica Agarwal; M. A. Barucci; Vania Da Deppo; B. Davidsson; Mariolino De Cecco; Stefano Debei; M. Fulle; Olivier Groussin; C. Güttler; Pedro J. Gutierrez; S. F. Hviid; Wing-Huen Ip
Multiple pairs of high-resolution images of the dust coma of comet 67P/Churyumov-Gerasimenko have been collected by OSIRIS onboard Rosetta allowing extraction and analysis of dust grain tracks. We developed a quasi automatic method to recognize and to extract dust tracks in the Osiris images providing size, FWHM and photometric data. The dust tracks characterized by a low signal-to-noise ratio were checked manually. We performed the photometric analysis of 70 dust grain tracks observed on two different Narrow Angle Camera images in the two filters F24 and F28, centered at lambda = 480.7 nm and at lambda = 743.7 nm, respectively, deriving the color and the reddening of each one. We then extracted several images of the nucleus observed with the same filters and with the same phase angle to be compared with the dust grain reddening. Most of the dust grain reddening is very similar to the nucleus values, confirming they come from the surface or subsurface layer. The histogram of the dust grain reddening has a secondary peak at negative values and shows some grains with values higher than the nucleus, suggesting a different composition from the surface grains. One hypothesis comes from the negative values point at the presence of hydrated minerals in the comet.
PROCEEDINGS OF SPIE, THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING | 2015
Cristina Re; E. Simioni; G. Cremonese; R. Roncella; Gianfranco Forlani; Vania Da Deppo; Giampiero Naletto; Giuseppe Salemi
The research group with the responsibility of the STereo Camera (STC) for the ESA BepiColombo mission to Mercury, has realized an innovative and compact camera design in which the light collected independently by two optical channels at ±20° with respect to the nadir direction converges on unique bidimensional detector. STC will provide the 3Dmapping of Mercury surface, acquiring images from two different perspectives. A stereo validation setup has been developed in order to give a much greater confidence to the novel instrument design and to get an on ground verification of the actual accuracies in obtaining elevation information from stereo pairs. A series of stereo-pairs of an anorthosite stone sample (good analogue of the hermean surface) and of a modelled piece of concrete, acquired in calibration clean room by means of an auxiliary optical system, have been processed in the photogrammetric pipeline using image correlation for the 3D model generation. The stereo reconstruction validation has been performed by comparing the STC DTMs (Digital Terrain Models) to an high resolution laser scanning 3D model of the stone samples as reference data. The latter has a much higher precision (ca. 20 μm) of the expected in-lab STC DTM (190 μm). Processing parameters have been varied in order to test their influence on the DTM generation accuracy. The main aim is to define the best illumination conditions and the process settings in order to obtain the best DTMs in terms of accuracy and completeness, seeking the best match between the mission constraints and the specific matching aspects that could affect the mapping process.
International Conference on Space Optics — ICSO 2014 | 2017
E. Simioni; Cristina Re; V. Da Deppo; Giampiero Naletto; Donato Borrelli; Michele Dami; I. Ficai Veltroni; G. Cremonese
In the framework of the ESA-JAXA BepiColombo mission to Mercury, the global mapping of the planet will be performed by the on-board Stereo Camera (STC), part of the SIMBIO-SYS suite [1]. In this paper we propose a new technique for the validation of the 3D reconstruction of planetary surface from images acquired with a stereo camera. STC will provide a three-dimensional reconstruction of Mercury surface. The generation of a DTM of the observed features is based on the processing of the acquired images and on the knowledge of the intrinsic and extrinsic parameters of the optical system. The new stereo concept developed for STC needs a pre-flight verification of the actual capabilities to obtain elevation information from stereo couples: for this, a stereo validation setup to get an indoor reproduction of the flight observing condition of the instrument would give a much greater confidence to the developed instrument design. STC is the first stereo satellite camera with two optical channels converging in a unique sensor. Its optical model is based on a brand new concept to minimize mass and volume and to allow push-frame imaging. This model imposed to define a new calibration pipeline to test the reconstruction method in a controlled ambient. An ad-hoc indoor set-up has been realized for validating the instrument designed to operate in deep space, i.e. in-flight STC will have to deal with source/target essentially placed at infinity. This auxiliary indoor setup permits on one side to rescale the stereo reconstruction problem from the operative distance in-flight of 400 km to almost 1 meter in lab; on the other side it allows to replicate different viewing angles for the considered targets. Neglecting for sake of simplicity the Mercury curvature, the STC observing geometry of the same portion of the planet surface at periherm corresponds to a rotation of the spacecraft (SC) around the observed target by twice the 20° separation of each channel with respect to nadir. The indoor simulation of the SC trajectory can therefore be provided by two rotation stages to generate a dual system of the real one with same stereo parameters but different scale. The set of acquired images will be used to get a 3D reconstruction of the target: depth information retrieved from stereo reconstruction and the known features of the target will allow to get an evaluation of the stereo system performance both in terms of horizontal resolution and vertical accuracy. To verify the 3D reconstruction capabilities of STC by means of this stereo validation set-up, the lab target surface should provide a reference, i.e. should be known with an accuracy better than that required on the 3D reconstruction itself. For this reason, the rock samples accurately selected to be used as lab targets have been measured with a suitable accurate 3D laser scanner. The paper will show this method in detail analyzing all the choices adopted to lead back a so complex system to the indoor solution for calibration.
International Conference on Space Optics — ICSO 2014 | 2017
Elena Martellato; E. Simioni; Michele Dami; Gianluca Aroldi; I. Ficai Veltroni; V. Da Deppo; Donato Borrelli; Giampiero Naletto; G. Cremonese; Bruno Cugny; Zoran Sodnik; Nikos Karafolas
BepiColombo is one of the cornerstone missions of the European Space Agency dedicated to the exploration of the planet Mercury and it is expected to be launched in July 2016. One of the BepiColombo instruments is the STereoscopic imaging Channel (STC), which is a channel of the Spectrometers and Imagers for MPO BepiColombo Integrated Observatory SYStem (SIMBIOSYS) suite: an integrated system for imaging and spectroscopic investigation of the Mercury surface. STC main aim is the 3D global mapping of the entire surface of the planet Mercury during the BepiColombo one year nominal mission. The STC instrument consists in a novel concept of stereocamera: two identical cameras (sub-channels) looking at ±20° from nadir which share most of the optical components and the detector. Being the detector a 2D matrix, STC is able to adopt the push-frame acquisition technique instead of the much common push-broom one. The camera has the capability of imaging in five different spectral bands: one panchromatic and four intermediate bands, in the range between 410 and 930 nm. To avoid mechanisms, the technical solution chosen for the filters is the single substrate stripe-butted filter in which different glass pieces, with different transmission properties, are glued together and positioned just in front of the detector. The useful field of view (FoV) of each sub-channel, though divided in 3 strips, is about 5.3° x 3.2°. The optical design, a modified Schmidt layout, is able to guarantee that over all the FoV the diffraction Ensquared Energy inside one pixel of the detector is of the order of 70-80%. To effectively test and calibrate the overall STC channel, an ad hoc Optical Ground Support Equipment has been developed. Each of the sub-channels has to be separately calibrated, but also the data of one sub-channel have to be easily correlated with the other one. In this paper, the experimental results obtained by the analysis of the data acquired during the preliminary onground optical calibration campaign on the STC Flight Model will be presented. This analysis shows a good agreement between the theoretical expected performance and the experimental results.
International Conference on Space Optics 2016 | 2017
E. Simioni; A. De Sio; V. Da Deppo; Giampiero Naletto; G. Cremonese; Nikos Karafolas; Bruno Cugny; Zoran Sodnik
The Stereo Camera (STC), mounted on-board the BepiColombo spacecraft, will acquire in push frame stereo mode the entire surface of Mercury. STC will provide the images for the global three-dimensional reconstruction of the surface of the innermost planet of the Solar System. The launch of BepiColombo is foreseen in 2018. STC has an innovative optical system configuration, which allows good optical performances with a mass and volume reduction of a factor two with respect to classical stereo camera approach. In such a telescope, two different optical paths inclined of ±20°, with respect to the nadir direction, are merged together in a unique off axis path and focused on a single detector. The focal plane is equipped with a 2k x 2k hybrid Si-PIN detector, based on CMOS technology, combining low read-out noise, high radiation hardness, compactness, lack of parasitic light, capability of snapshot image acquisition and short exposure times (less than 1 ms) and small pixel size (10 μm). During the preflight calibration campaign of STC, some detector spurious effects have been noticed. Analyzing the images taken during the calibration phase, two different signals affecting the background level have been measured. These signals can reduce the detector dynamics down to a factor of 1/4th and they are not due to dark current, stray light or similar effects. In this work we will describe all the features of these unwilled effects, and the calibration procedures we developed to analyze them.
Nature Astronomy | 2017
M. Pajola; S. Höfner; Jean-Baptiste Vincent; N. Oklay; Frank Scholten; Frank Preusker; S. Mottola; Giampiero Naletto; S. Fornasier; S. C. Lowry; C. Feller; P. H. Hasselmann; C. Güttler; C. Tubiana; H. Sierks; Cesare Barbieri; P. L. Lamy; R. Rodrigo; D. Koschny; Hans Rickman; H. U. Keller; Jessica Agarwal; Michael F. A’Hearn; M. A. Barucci; J.-L. Bertaux; I. Bertini; Sebastien Besse; S. Boudreault; G. Cremonese; V. Da Deppo
Advances in Geosciences | 2009
G. Cremonese; D. Fantinel; E. Giro; M. T. Capria; V. Da Deppo; Giampiero Naletto; Gianfranco Forlani; Matteo Massironi; Lorenza Giacomini; Maria Sgavetti; E. Simioni; Carlo Bettanini Fecia Di Cossato; Stefano Debei; Mirco Zaccariotto; Patrizia Borin; L. Mariangeli; Enrico Flamini