E. Snoeck
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Snoeck.
Ultramicroscopy | 1998
Martin Hÿtch; E. Snoeck; R. Kilaas
A method for measuring and mapping displacement fields and strain fields from high-resolution electron microscope (HREM) images has been developed. The method is based upon centring a small aperture around a strong reflection in the Fourier transform of an HREM lattice image and performing an inverse Fourier transform. The phase component of the resulting complex image is shown to give information about local displacements of atomic planes and the two-dimensional displacement field can be derived by applying the method to two non-colinear Fourier components. Local strain components can be found by analysing the derivative of the displacement field. The details of the technique are outlined and applied to an experimental HREM image of a domain wall in ferroelectric–ferroelastic PbTiO3.
Nature | 2008
Martin Hÿtch; Florent Houdellier; Florian Hüe; E. Snoeck
Strained silicon is now an integral feature of the latest generation of transistors and electronic devices because of the associated enhancement in carrier mobility. Strain is also expected to have an important role in future devices based on nanowires and in optoelectronic components. Different strategies have been used to engineer strain in devices, leading to complex strain distributions in two and three dimensions. Developing methods of strain measurement at the nanoscale has therefore been an important objective in recent years but has proved elusive in practice: none of the existing techniques combines the necessary spatial resolution, precision and field of view. For example, Raman spectroscopy or X-ray diffraction techniques can map strain at the micrometre scale, whereas transmission electron microscopy allows strain measurement at the nanometre scale but only over small sample areas. Here we present a technique capable of bridging this gap and measuring strain to high precision, with nanometre spatial resolution and for micrometre fields of view. Our method combines the advantages of moiré techniques with the flexibility of off-axis electron holography and is also applicable to relatively thick samples, thus reducing the influence of thin-film relaxation effects.
Nature Materials | 2011
Gustau Catalan; A. Lubk; A. H. G. Vlooswijk; E. Snoeck; C. Magen; A. Janssens; Gijsbert Rispens; Guus Rijnders; Dave H.A. Blank; Beatriz Noheda
Strain engineering enables modification of the properties of thin films using the stress from the substrates on which they are grown. Strain may be relaxed, however, and this can also modify the properties thanks to the coupling between strain gradient and polarization known as flexoelectricity. Here we have studied the strain distribution inside epitaxial films of the archetypal ferroelectric PbTiO(3), where the mismatch with the substrate is relaxed through the formation of domains (twins). Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal an intricate strain distribution, with gradients in both the vertical and, unexpectedly, the horizontal direction. These gradients generate a horizontal flexoelectricity that forces the spontaneous polarization to rotate away from the normal. Polar rotations are a characteristic of compositionally engineered morphotropic phase boundary ferroelectrics with high piezoelectricity; flexoelectricity provides an alternative route for generating such rotations in standard ferroelectrics using purely physical means.
Applied Physics Letters | 1994
S. Piñol; F. Sandiumenge; B. Martínez; V. Gomis; J. Fontcuberta; X. Obradors; E. Snoeck; Ch. Roucau
The microstructure and critical currents of superconducting YBa2Cu3O7‐Y2BaCuO5 composites with small CeO2 additions prepared using a directional solidification procedure have been investigated. The small CeO2 additions cause the decomposition of the Y2BaCuO5 phase leading to the formation of Y2O3 and BaCeO3. Experimental evidence is given for the subsequent nucleation of the Y2BaCuO5 phase on the Y2O3 particles. This new decomposition‐nucleation mechanism leads to textured YBa2Cu3O7 having enhanced critical currents. An addition of 0.3 wt % CeO2 can increase Jabc by a factor of 2 in samples having similar concentration of Y2BaCuO5 precipitates. Critical currents above 105 A/cm2 at 77 K and zero field are obtained by this method.
Nano Letters | 2008
E. Snoeck; Christophe Gatel; Lise-Marie Lacroix; Thomas Blon; Sébastien Lachaize; J. Carrey; M. Respaud; Bruno Chaudret
Ferromagnetic nanomaterials exhibit unique magnetic properties common to materials with dimensions approaching the atomic scale and have potential applications in magnetic data storage. Technological applications, however, require that the detailed magnetic behaviors and configurations of individual and interacting magnetic nano-objects be clarified. We determined the magnetic remnant configurations in single crystalline 30 nm Fe nanocubes and groups of nanocubes using off-axis electron holography in a transmission electron microscope. Our measurements on an isolated cube reveal a vortex state whose core size has been determined. Two neighboring nanocubes with adjacent {100} surfaces exhibit a ferromagnetic dipolar coupling, while similar magnetic interactions between four cubes in a square arrangement induce a bending of the magnetic induction, i.e., a magnetic flux closure state. The various configurations were successfully simulated by micromagnetic calculations.
ACS Nano | 2011
Luis Serrano-Ramón; R. Córdoba; Luis A. Rodríguez; C. Magen; E. Snoeck; Christophe Gatel; Inés Serrano; M. R. Ibarra; José María de Teresa
We have successfully grown ultrasmall cobalt nanostructures (lateral size below 30 nm) by optimization of the growth conditions using focused electron-beam-induced deposition techniques. This direct-write nanolithography technique is thus shown to produce unprecedented resolution in the growth of magnetic nanostructures. The challenging magnetic characterization of such small structures is here carried out by means of electron holography techniques. Apart from growing ultranarrow nanowires, very small Hall sensors have been created and their large response has been unveiled.
Journal of Applied Physics | 2001
G. N. Kakazei; Yu. G. Pogorelov; A. M. L. Lopes; J. B. Sousa; S. Cardoso; Paulo P. Freitas; M. M. Pereira de Azevedo; E. Snoeck
Discontinuous multilayered Co80Fe20(t)/Al2O3(30 A) thin films have been prepared by ion-beam sputtering. We report on structural, magnetic, and transport (for current in plane geometry) results obtained in this system. With growing nominal thickness t of the metal layers, which effectively characterizes the granular structure, a transition from tunnel to metallic conductance is observed, indicating the onset of infinite conducting paths at t>18 A. At t 13 A was detected from the magnetization data which display here a transition from superparamagnetic to ferromagnetic behavior. The measurements of tunnel magnetoresistance (MR) show that a sharp maximum of MR sensitivity to field takes place at this thickness, reaching ∼24%/kOe at room temperature. At least, MR itself as a function of t has a break at the same value. All these features suggest that some specific kind of percolation with respect to magnetic order occurs in o...
Journal of Chemical Physics | 2000
Fabrice Dassenoy; Marie José Casanove; Pierre Lecante; Marc Verelst; E. Snoeck; Alain Mosset; T. Ould Ely; Catherine Amiens; B. Chaudret
Ultrafine cobalt particles have been reproducibly synthesized by decomposition of an organometallic precursor in the presence of a stabilizing polymer. The size of the stable monodisperse colloids thus obtained is seen to strongly depend on the nature of the polymer: around 4.2 nm diameter in polyphenylenoxide (PPO) and around 1.4 nm diameter in polyvinylpyrrolidone (PVP). Investigations by wide angle x-ray scattering (WAXS) and high-resolution transmission electron microscopy (HRTEM) give evidence for a size dependence of the structural organization, and hence for a close relationship between structure and synthesis conditions. Co/PPO particles exhibit a hexagonal compact structure with the metal–metal bond length of the bulk material while Co/PVP ones display an original structure. We show that the unusual features of the experimental data in Co/PVP clearly point to a nonperiodic polytetrahedral structure. Successful simulations of the HRTEM and WAXS results have been obtained using models built on the ...
Nano Letters | 2013
Nicolas Biziere; Christophe Gatel; Rémy Lassalle-Balier; Marie-Claude Clochard; J.-E. Wegrowe; E. Snoeck
We present the first experimental imaging of the internal DW structure in 55 and 85 nm diameter Ni nanocylinders, using electron holography combined with micromagnetic calculations. We demonstrate the magnetic transition from a hybrid magnetic state with both vortex and transverse DW in 85 nm diameter Ni nanocylinders to a pure transverse wall in thinner nanowires. This is particularly important as DWs in nanocylinders are model systems to go beyond the classical Walker limit.
Journal of Applied Physics | 2006
A. V. Ramos; J.-B. Moussy; M.-J. Guittet; A. M. Bataille; Martine Gautier-Soyer; M. Viret; C. Gatel; P. Bayle-Guillemaud; E. Snoeck
We present an in-depth study of the magnetotransport properties of epitaxial Fe3O4 films as a function of film thickness. The films, grown on α-Al2O3(0001) single crystals by atomic-oxygen assisted molecular beam epitaxy, exhibit high structural order and abrupt interfaces. These films contain antiphase boundaries (APBs), the density of which is strongly dependent on film thickness. A series of resistivity and magnetoresistance measurements demonstrate a systematic evolution of these properties with decreasing film thickness, revealing the impact of APBs on the transport properties in the films. We present a model based on the spin-polarized transport across an antiferromagnetically coupled APB in order to successfully reproduce our experimental data over a large range of applied magnetic fields. The comparison of this model with experimental results further clarifies the mechanism of the anomalous magnetotransport behavior in Fe3O4.