E. Spyratou
National Technical University of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Spyratou.
Cancer Letters | 2012
E. Spyratou; M. Makropoulou; Elena A. Mourelatou; Costas Demetzos
Reactive oxygen species (ROS) are usually involved in two opposite procedures related to cancer: initiation, progression and metastasis of cancer, as well as in all non-surgical therapeutic approaches for cancer, including chemotherapy, radiotherapy and photodynamic therapy. This review is concentrated in new therapeutic strategies that take advantage of increased ROS in cancer cells to enhance therapeutic activity and selectivity. Novel biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy are discussed, including optical tweezers and atomic force microscopy. This review highlights how these techniques are playing a critical role in recent and future cancer fighting applications. We can conclude that Biophotonics and nanomedicine are the future for cancer biology and disease management, possessing unique potential for early detection, accurate diagnosis, dosimetry and personalized treatment of biomedical applications targeting cancer.
Expert Opinion on Drug Delivery | 2009
E. Spyratou; Elena A. Mourelatou; M. Makropoulou; Costas Demetzos
Much work has been done during the past few decades to develop effective drug delivery systems (DDS), many of which are based on nanotechnology science. Liposomes are the most attractive lipid vesicles for drug delivery. The multifunctional properties of liposomes have a key role in modifying the bioavailability profile of a therapeutic agent. Different analytical techniques can be used to describe liposomes, not least applied scanning probe microscopy (SPM) techniques. Atomic force microscopy (AFM) seems to be one of the most effectively applied SPM techniques. This review article outlines the applications of AFM in evaluating the physical characteristics and stability of liposomal DDSs. Other well-known microscopy techniques used in evaluating liposome physical characteristics are also mentioned, and the contribution of AFM to evaluating liposomal stability is discussed. Among the advantages of AFM in examining the physicochemical properties of liposomal DDSs is its ability to provide morphological and metrology information on liposome properties. AFM thus appears to be a promising tool in technological characterization of liposomal DDSs.
Lasers in Medical Science | 2008
E. Spyratou; M. Makropoulou; Alexander A. Serafetinides
Laser–polymer interactions have attracted extensive attention both for understanding the inherent basic ablation mechanism and for development of tissue simulators in several biomedical laser applications such as in human ophthalmology. Ablation experiments were performed on polymethylmethacrylate used as cornea tissue simulator and PMMA intraocular lenses. The polymer–ablation mechanism was examined with two different wavelengths and pulse durations. The experiments were conducted with Nd:YAG and Er:YAG solid-state lasers, and the ablation rates were simulated by a mathematical model in each case. Furthermore, to investigate the role of tissue hydration during laser ablation, we performed a set of experiments in which Er:YAG laser ablation of hydrophilic acrylic intraocular lenses, with different H2O and D2O concentrations, was studied. The hydrophilic acrylic lenses with the higher concentration of H2O gave the most satisfactory results regarding both the ablation efficiency and the quality of the ablated craters.
Cancers | 2017
E. Spyratou; M. Makropoulou; Efstathios Efstathopoulos; Alexandros G. Georgakilas; Lembit Sihver
Many tumor-targeted strategies have been used worldwide to limit the side effects and improve the effectiveness of therapies, such as chemotherapy, radiotherapy (RT), etc. Biophotonic therapy modalities comprise very promising alternative techniques for cancer treatment with minimal invasiveness and side-effects. These modalities use light e.g., laser irradiation in an extracorporeal or intravenous mode to activate photosensitizer agents with selectivity in the target tissue. Photothermal therapy (PTT) is a minimally invasive technique for cancer treatment which uses laser-activated photoabsorbers to convert photon energy into heat sufficient to induce cells destruction via apoptosis, necroptosis and/or necrosis. During the last decade, PTT has attracted an increased interest since the therapy can be combined with customized functionalized nanoparticles (NPs). Recent advances in nanotechnology have given rise to generation of various types of NPs, like gold NPs (AuNPs), designed to act both as radiosensitizers and photothermal sensitizing agents due to their unique optical and electrical properties i.e., functioning in dual mode. Functionalized AuNPS can be employed in combination with non-ionizing and ionizing radiation to significantly improve the efficacy of cancer treatment while at the same time sparing normal tissues. Here, we first provide an overview of the use of NPs for cancer therapy. Then we review many recent advances on the use of gold NPs in PTT, RT and PTT/RT based on different types of AuNPs, irradiation conditions and protocols. We refer to the interaction mechanisms of AuNPs with cancer cells via the effects of non-ionizing and ionizing radiations and we provide recent existing experimental data as a baseline for the design of optimized protocols in PTT, RT and PTT/RT combined treatment.
Seventeenth International School on Quantum Electronics: Laser Physics and Applications | 2013
D. P. Lagiou; Ch. Evangelatos; A. Apostolopoulos; E. Spyratou; C. Bacharis; M. Makropoulou; Alexander A. Serafetinides
The aim of this work is to investigate the effect of UV solid state laser radiation on intraocular lens (IOL) polymer surfaces as an alternative method to conventional surface shaping techniques for IOLs customization. Laser ablation experiments were performed on PMMA plates and commercially available hydrophobic and hydrophilic acrylic IOLs with the 5th harmonic of a Q-switched Nd:YAG laser (λ=213 nm). Circular arrays of holes were drilled on the polymer surface, covering the centre and the peripheries of the IOL. The morphology of the ablated IOL surface was examined with a conventional optical microscope (Leitz GMBH Wetzlar) and with a scanning electron microscope (SEM, Fei - Innova Nanoscope) at various laser parameters. Quantitative measurements of ablation rates were performed with a contact profilometer (Dektak-150), in which a mechanical stylus scanned across the surface of gold-coated IOLs (after SEM imaging) to measure variationsF in surface height. Laser interaction with IOLs depends on optical and mechanical material properties, in addition to laser radiation parameters. The exact ablation mechanism is discussed. Some polymer materials, depending on their properties, are more susceptible to the photothermal mechanism than the photochemical one or vice versa. In summary, every IOL polymer exhibits specific attributes in its interaction with the 5th harmonic of Nd:YAG laser.
16th International School on Quantum Electronics: Laser Physics and Applications | 2010
Alexander A. Serafetinides; E. Spyratou; M. Makropoulou
The use of intraocular lenses (IOL) is the most promising method for restoring excellent vision in cataract surgery. In addition, multifocal intraocular lenses for good distant and near vision are investigated. Several new materials, techniques and patterns are studied for the formation and etching of intraocular lenses in order to improve their optical properties and reduce the diffractive aberrations. As pulsed laser ablation is well established as a universal tool for surface processing of organic polymer materials, this study was focused in using laser ablation with short and ultra short laser pulses for surface modification of PMMA and intraocular lenses, instead of using other conventional techniques. The main advantage of using very short laser pulses, e.g. of ns, ps or fs duration, is that heat diffusion into the polymer material is negligible. As a result high precision patterning of the sample, without thermal damage of the surroundings, becomes possible. In this study, laser ablation was performed using commercially available hydrophobic acrylic IOLs, hydrophilic acrylic IOLs, and PMMA IOLs, with various diopters. We investigated the ablation efficiency and the phenomenology of the etched patterns by testing the ablation rate, versus laser energy fluence, at several wavelengths and the surface modification with atomic force microscopy (AFM), or scanning electron microscopy (SEM). The irradiated polymers have different optical properties, at the applied wavelengths, and therefore, present different ablation behaviour and morphology of the laser ablated crater walls and surrounding surfaces. The experimental results, some theoretical assumptions for mathematical modeling of the relevant ablation mechanisms are discussed.
Scientific Reports | 2017
Giorgia Giacometti; Carla Ferreri; Anna Sansone; Chryssostomos Chatgilialoglu; Carla Marzetti; E. Spyratou; Alexandros G. Georgakilas; Marina Marini; Provvidenza Maria Abruzzo; Alessandra Bolotta; Alessandro Ghezzo; Renato Minguzzi; Annio Posar; Paola Visconti
Membranes attract attention in medicine, concerning lipidome composition and fatty acid correlation with neurological diseases. Hyperspectral dark field microscopy (HDFM), a biophotonic imaging using reflectance spectra, provides accurate characterization of healthy adult RBC identifying a library of 8 spectral end-members. Here we report hyperspectral RBC imaging in children affected by Autism Spectrum Disorder (ASD) (n = 21) compared to healthy age-matched subjects (n = 20), investigating if statistically significant differences in their HDFM spectra exist, that can comprehensively map a membrane impairment involved in disease. A significant difference concerning one end-member (spectrum 4) was found (P value = 0.0021). A thorough statistical treatment evidenced: i) diagnostic performance by the receiving operators curve (ROC) analysis, with cut-offs and very high predictive values (P value = 0.0008) of spectrum 4 for identifying disease; ii) significant correlations of spectrum 4 with clinical parameters and with the RBC membrane deficit of the omega-3 docosahexaenoic acid (DHA) in ASD patients; iii) by principal component analysis, very high affinity values of spectrum 4 to the factor that combines behavioural parameters and the variable “cc” discriminating cases and controls. These results foresee the use of biophotonic methodologies in ASD diagnostic panels combining with molecular elements for a correct neuronal growth.
Journal of Liposome Research | 2015
E. Spyratou; Efrosini Cunaj; George Tsigaridas; Elena A. Mourelatou; Costas Demetzos; Alexander A. Serafetinides; M. Makropoulou
Abstract Liposomes are well-known cell simulators and are currently studied as drug delivery systems, for a targeted delivery of higher drug concentrations, in specific cells. Novel biophotonic techniques for manipulation and characterization of liposomes have been developed; among which are optical tweezers. In our work, we demonstrate a novel use of line optical tweezers to manipulate and cause liposome deformations. Optical forces induce tension on liposomes, which are stretched along the line optical trap. The method of dielectrophoresis, combined with optical tweezers, was used to measure the exerted optical forces. As a consequence, in the case of reversible liposome deformations, the value of the shear and bending moduli of liposomes was calculated. We anticipate that the selective manipulation of liposomes will help us toward a better understanding of the cellular–liposome interactions. Studying the biomechanical properties of liposomes will provide an insight into the mechanical behavior of individual living cells, which have recently been implicated in many aspects of human physiology and patho-physiology. The biomechanical properties of cells (i.e. deformability, stiffness and elasticity) can be useful biomarkers for various disease processes and changes of the cell state.
Medical Laser Applications and Laser-Tissue Interactions V (2011), paper 80920T | 2011
E. Spyratou; M. Makropoulou; Alexandros A. Serafetinides
In this work optical tweezers with elliptical beam profiles have been developed in order to examine the effect of optical force on fresh red blood cells (RBC) in isotonic, hypertonic and hypotonic buffer solutions. Considering that the optical force depends essentially on the cell surface and the cytoplasmic refractive index, it is obvious that biochemical modifications associated with different states of the cell will influence its behaviour in the optical trap. Line optical tweezers were used to manipulate simultaneously more than one red blood cell. After we have been manipulated a RBC with an elliptical laser beam profile in an isotonic or hypertonic buffer, we noticed that it rotates by itself when gets trapped by optical tweezers and undergoes folding. Further shape deformations can be observed attributed to the competition between alignment and rotational torque which are transferred by laser light to the cell. In hypotonic buffer RBCs become spherical and do not rotate or fold since the resultant force due to rays emerging from diametrically opposite points of the cell leads to zero torque. Manipulation of fresh red blood cells in isotonic solution by line optical tweezers leads to folding and elongation of trapped RBCs. Membrane elasticity properties such as bending modulus can be estimated by measuring RBCs folding time in function with laser power.
14th International School on Quantum Electronics: Laser Physics and Applications | 2007
Alexander A. Serafetinides; M. Makropoulou; E. Spyratou; C. Bacharis
Despite the fact that the laser applications in human ophthalmology are well established, further research is still required, for better and predictable ablation dosimetry on both cornea tissue and intraocular lenses. Further studies for alternative laser sources to the well established excimer lasers, such as UV or mid-infrared solid state lasers, have been proposed for refractive surgery. The precise lens ablation requires the use of laser wavelengths possessing a small optical penetration depth in the cornea and in the synthetic lenses, in order to confine the laser energy deposition to a small volume. In order to eliminate some very well known problems concerning the reshaping of cornea and the modification of the optical properties of the intraocular lenses, ablation experiments of ex vivo porcine cornea, acrylic PMMA and hydrophilic lenses were conducted with an Er:YAG laser (2.94 &mgr;m) and the fifth harmonic of a Nd:YAG laser (213 nm). The morphology of cornea was recorded using a cornea topography system before and immediately after the ablation. Histology analysis of the specimens was obtained, in order to examine the microscopic appearance of the ablated craters and the existence of any thermal damage caused by the mid-infrared and UV laser irradiation. The macroscopic morphology of the intraocular lens craters was inspected with an optical transmission microscope. Measurements of the ablation rates of the lenses were performed and simulated by a mathematical model.