E. Tobias Krause
Bielefeld University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Tobias Krause.
Biology Letters | 2012
E. Tobias Krause; Oliver Krüger; Philip Kohlmeier; Barbara A. Caspers
The ability to recognize close relatives in order to cooperate or to avoid inbreeding is widespread across all taxa. One accepted mechanism for kin recognition in birds is associative learning of visual or acoustic cues. However, how could individuals ever learn to recognize unfamiliar kin? Here, we provide the first evidence for a novel mechanism of kin recognition in birds. Zebra finch (Taeniopygia guttata) fledglings are able to distinguish between kin and non-kin based on olfactory cues alone. Since olfactory cues are likely to be genetically based, this finding establishes a neglected mechanism of kin recognition in birds, particularly in songbirds, with potentially far-reaching consequences for both kin selection and inbreeding avoidance.
PLOS ONE | 2009
E. Tobias Krause; Mariam Honarmand; Jennifer Wetzel; Marc Naguib
Conditions experienced during early life can have profound effects on individual development and condition in adulthood. Differences in nutritional provisioning in birds during the first month of life can lead to differences in growth, reproductive success and survival. Yet, under natural conditions shorter periods of nutritional stress will be more prevalent. Individuals may respond differently, depending on the period of development during which nutritional stress was experienced. Such differences may surface specifically when poor environmental conditions challenge individuals again as adults. Here, we investigated long term consequences of differences in nutritional conditions experienced during different periods of early development by female zebra finches (Taeniopygia guttata) on measures of management and acquisition of body reserves. As nestlings or fledglings, subjects were raised under different nutritional conditions, a low or high quality diet. After subjects reached sexual maturity, we measured their sensitivity to periods of food restriction, their exploration and foraging behaviour as well as adult resting metabolic rate (RMR). During a short period of food restriction, subjects from the poor nutritional conditions had a higher body mass loss than those raised under qualitatively superior nutritional conditions. Moreover, subjects that were raised under poor nutritional conditions were faster to engage in exploratory and foraging behaviour. But RMR did not differ among treatments. These results reveal that early nutritional conditions affect adult exploratory behaviour, a representative personality trait, foraging and adults physiological condition. As early nutritional conditions are reflected in adult phenotypic plasticity specifically when stressful situations reappear, the results suggest that costs for poor developmental conditions are paid when environmental conditions deteriorate.
Biology Letters | 2011
Barbara A. Caspers; E. Tobias Krause
Passerine birds have an extensive repertoire of olfactory receptor genes. However, the circumstances in which passerine birds use olfactory signals are poorly understood. The aim of this study is to investigate whether olfactory cues play a role in natal nest recognition in fledged juvenile passerines. The natal nest provides fledglings with a safe place for sleeping and parental food provisioning. There is a particular demand in colony-breeding birds for fledglings to be able to identify their nests because many pairs breed close to each other. Olfactory orientation might thus be of special importance for the fledglings, because they do not have a visual representation of the nest site and its position in the colony when leaving the nest for the first time. We investigated the role of olfaction in nest recognition in zebra finches, which breed in dense colonies of up to 50 pairs. We performed odour preference tests, in which we offered zebra finch fledglings their own natal nest odour versus foreign nest odour. Zebra finch fledglings significantly preferred their own natal nest odour, indicating that fledglings of a colony breeding songbird may use olfactory cues for nest recognition.
Animal Behaviour | 2011
E. Tobias Krause; Marc Naguib
Individuals with reduced body mass resulting from early nutritional stress often compensate for this later in growth. This compensatory growth can be beneficial as individuals adjust their body mass to the level of individuals that grew up under better conditions. Yet, compensatory growth can also result in costs that are paid later in life. In zebra finches raised under different nutritional conditions, we tested whether compensatory growth affects subsequent adult exploratory behaviour, a proxy for an avian personality trait. We tested their exploratory behaviour in a spatial test to find hidden food on 2 consecutive days. The behavioural measures of exploration correlated with each other across time showing a high individual behavioural consistency. Early nutritional treatment itself did not affect exploration and feeding. Yet, birds with higher previous compensatory growth were less active and approached the food with different latencies from birds with lower compensatory growth. Life history decisions on whether to compensate for a bad start or stay small thus result in elementary differences in behaviour, such as exploratory behaviour, with potential fitness consequences, depending on payoffs of explorative strategies in different environmental conditions.
Molecular Ecology | 2014
Barbara A. Caspers; E. Tobias Krause; Ralf Hendrix; Michael Kopp; Oliver Rupp; Katrin Rosentreter; Sebastian Steinfartz
Although classically thought to be rare, female polyandry is widespread and may entail significant fitness benefits. If females store sperm over extended periods of time, the consequences of polyandry will depend on the pattern of sperm storage, and some of the potential benefits of polyandry can only be realized if sperm from different males is mixed. Our study aimed to determine patterns and consequences of polyandry in an amphibian species, the fire salamander, under fully natural conditions. Fire salamanders are ideal study objects, because mating, fertilization and larval deposition are temporally decoupled, females store sperm for several months, and larvae are deposited in the order of fertilization. Based on 18 microsatellite loci, we conducted paternity analysis of 24 female‐offspring arrays with, in total, over 600 larvae fertilized under complete natural conditions. More than one‐third of females were polyandrous and up to four males were found as sires. Our data clearly show that sperm from multiple males is mixed in the females spermatheca. Nevertheless, paternity is biased, and the most successful male sires on average 70% of the larvae, suggesting a ‘topping off’ mechanism with first‐male precedence. Female reproductive success increased with the number of sires, most probably because multiple mating ensured high fertilization success. In contrast, offspring number was unaffected by female condition and genetic characteristics, but surprisingly, it increased with the degree of genetic relatedness between females and their sires. Sires of polyandrous females tended to be genetically similar to each other, indicating a role for active female choice.
PLOS ONE | 2012
E. Tobias Krause; Barbara A. Caspers
Reliably recognizing their own nest provides parents with a necessary skill to invest time and resources efficiently in raising their offspring and thereby maximising their own reproductive success. Studies investigating nest recognition in adult birds have focused mainly on visual cues of the nest or the nest site and acoustic cues of the nestlings. To determine whether adult songbirds also use olfaction for nest recognition, we investigated the use of olfactory nest cues for two estrildid finch species, zebra finches (Taeniopygia guttata) and Bengalese finches (Lonchura striata var. domestica) during the nestling and fledgling phase of their offspring. We found similar behavioural responses to nest odours in both songbird species. Females preferred the odour of their own nest over a control and avoided the foreign conspecific nest scent over a control during the nestling phase of their offspring, but when given the own odour and the foreign conspecific odour simultaneously we did not find a preference for the own nest odour. Males of both species did not show any preferences at all. The behavioural reaction to any nest odour decreased after fledging of the offspring. Our results show that only females show a behavioural response to olfactory nest cues, indicating that the use of olfactory cues for nest recognition seems to be sex-specific and dependent on the developmental stage of the offspring. Although estrildid finches are known to use visual and acoustic cues for nest recognition, the similar behavioural pattern of both species indicates that at least females gain additional information by olfactory nest cues during the nestling phase of their offspring. Thus olfactory cues might be important in general, even in situations in which visual and acoustic cues are known to be sufficient.
Behavioural Processes | 2014
Vera Brust; Oliver Krüger; Marc Naguib; E. Tobias Krause
Long-term effects of early developmental conditions on physiological and behavioural traits are common in animals. Yet, such lifelong effects of early life conditions on learning skills received relatively less attention, even though they are expected to have strong fitness effects. To test the lifelong impact of the early environment on associative and reversal learning performance, we tested zebra finches (Taeniopygia guttata) in a reversal learning task about five years after they were raised either under low or high quality food treatments in their first month of life. The early nutritional treatment and its respective growth patterns significantly influenced learning performance: Zebra finches who received a high-quality nutrition early in life gained more weight during the treatment period but needed more trials to associate a cue with a reward. The early growth rate during the treatment phase was linked to how fast the birds detected the food at the onset of training in our learning task as well as to their associative learning performance. However, in the reversal learning step of the task testing for behavioural flexibility, no differences with respect to early nutritional treatments or related growth rates were apparent. We show that early life conditions directly affect the approach to our task and learning abilities over an entire lifetime, emphasizing how crucial the early environment is for understanding adult behaviour throughout life.
Evolutionary Ecology | 2014
E. Tobias Krause; Marc Naguib
The performance of an individual can be critically influenced by its experience early in life as well as trans-generationally by the conditions experienced by its parents. However, it remains unclear whether or not the early experience of parents and offspring interact with each other and adapt offspring when the parental and own early environmental conditions match. Here, zebra finches (Taeniopygia guttata) that had experienced either early low or high nutritional conditions raised their offspring under either matched or mismatched nutritional conditions. Parental and offspring early conditions both separately affected the offspring’s adult phenotype, but early conditions experienced by parents and offspring did not interact as predicted. Offspring that grew up under conditions matching those their parents had experienced did not do better than those that grew up in a mismatched environment. Thus, transgenerational effects remain a lifelong burden to the offspring acting in addition to the offspring’s own early life experience. The lack of evidence for adaptive programming to matching environmental conditions may result from non-predictive environments under natural conditions in such opportunistic breeders.
Behavioral Ecology and Sociobiology | 2014
E. Tobias Krause; Christoph Brummel; Sarah Kohlwey; Markus C. Baier; Caroline Müller; Francesco Bonadonna; Barbara A. Caspers
Although birds have recently been shown to possess olfactory abilities and to use chemical cues in communication, limited effort has been made to demonstrate the use of odorants in social contexts. Even less is known regarding the use of odorants in species recognition. The ability to recognize conspecifics should be more pronounced in social species. This study investigated the importance of olfactory cues in species recognition in females of two estrildid finch species with different levels of sociality. Combining odor preference tests with chemical analyses, we surveyed whether female zebra finches and diamond firetails are able to distinguish between the species based on volatile traits and whether individuals exhibit species-specific differences in body odorants. Zebra finches are more social than diamond firetails; nevertheless, both species have an overlapping distribution area. Applying an experimental Y-maze paradigm, we showed that zebra finches can use differences in their species odor fingerprints and displayed a significant preference for the odor of conspecifics over that of heterospecifics, whereas diamond firetails did not reveal a preference. Using gas chromatography and mass spectrometry, we demonstrated that body odorants of the two species were significantly different in relative composition. This finding demonstrates the potential importance of olfactory cues in species recognition, at least in social bird species. Even these two closely related species displayed remarkable differences in their responsiveness to similar chemical cues, which might be caused by species-specific differences in ecology, physiology, or evolution.
Animal Behaviour | 2013
Barbara A. Caspers; Joseph I. Hoffman; Philip Kohlmeier; Oliver Krüger; E. Tobias Krause
Olfactory communication is widespread across the animal kingdom but until recently was believed to be unimportant in songbirds. However, recent studies of zebra finches, Taeniopygia guttata, have found that fledglings are capable of recognizing their own nest based on olfactory cues alone. This raises the important question of whether this knowledge is learned or innate. To discriminate between these two hypotheses, we experimentally fostered single eggs into foreign, unrelated broods, and subsequently tested the odour preferences of the respective fledglings. In contrast to a previous study in which individuals were fostered as chicks, we found a strong preference for the host nest odour. This suggests that olfactory imprinting occurs and is based on a familial template learnt within a narrow time window around hatching.