Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. van Kampen is active.

Publication


Featured researches published by E. van Kampen.


Monthly Notices of the Royal Astronomical Society | 2011

Galaxy and Mass Assembly (GAMA): survey diagnostics and core data release

Simon P. Driver; D. T. Hill; Lee S. Kelvin; Aaron S. G. Robotham; J. Liske; Peder Norberg; Ivan K. Baldry; Steven P. Bamford; Andrew M. Hopkins; J. Loveday; J. A. Peacock; E. Andrae; Joss Bland-Hawthorn; S. Brough; Michael J. I. Brown; Ewan Cameron; J. H. Y. Ching; Matthew Colless; Christopher J. Conselice; Scott M. Croom; N. J. G. Cross; R. De Propris; S. Dye; Michael J. Drinkwater; S. Ellis; Alister W. Graham; M. W. Grootes; M. L. P. Gunawardhana; D. H. Jones; E. van Kampen

The Galaxy and Mass Assembly (GAMA) survey has been operating since 2008 February on the 3.9-m Anglo-Australian Telescope using the AAOmega fibre-fed spectrograph facility to acquire spectra with a resolution of R ≈ 1300 for 120 862 Sloan Digital Sky Survey selected galaxies. The target catalogue constitutes three contiguous equatorial regions centred at 9h (G09), 12h (G12) and 14.5h (G15) each of 12 × 4 deg2 to limiting fluxes of rpet < 19.4, rpet < 19.8 and rpet <19.4 mag, respectively (and additional limits at other wavelengths). Spectra and reliable redshifts have been acquired for over 98 per cent of the galaxies within these limits. Here we present the survey footprint, progression, data reduction, redshifting, re-redshifting, an assessment of data quality after 3 yr, additional image analysis products (including ugrizYJHK photometry, S´ersic profiles and photometric redshifts), observing mask and construction of our core survey catalogue (GamaCore). From this we create three science-ready catalogues: GamaCoreDR1 for public release, which includes data acquired during year 1 of operations within specified magnitude limits (2008 February to April); GamaCoreMainSurvey containing all data above our survey limits for use by the GAMA Team and collaborators; and GamaCore-AtlasSV containing year 1, 2 and 3 data matched to Herschel-ATLAS science demonstration data. These catalogues along with the associated spectra, stamps and profiles can be accessed via the GAMA website: http://www.gama-survey.org/


Publications of the Astronomical Society of the Pacific | 2010

The Herschel ATLAS

Stephen Anthony Eales; Loretta Dunne; D. L. Clements; A. Cooray; G. De Zotti; Simon Dye; R. J. Ivison; M. J. Jarvis; Guilaine Lagache; Steve Maddox; M. Negrello; S. Serjeant; M. A. Thompson; E. van Kampen; A. Amblard; Paola Andreani; M. Baes; A. Beelen; G. J. Bendo; Dominic J. Benford; Frank Bertoldi; James J. Bock; D. G. Bonfield; A. Boselli; C. Bridge; V. Buat; D. Burgarella; R. Carlberg; A. Cava; P. Chanial

The Herschel ATLAS is the largest open-time key project that will be carried out on the Herschel Space Observatory. It will survey 570 deg2 of the extragalactic sky, 4 times larger than all the other Herschel extragalactic surveys combined, in five far-infrared and submillimeter bands. We describe the survey, the complementary multiwavelength data sets that will be combined with the Herschel data, and the six major science programs we are undertaking. Using new models based on a previous submillimeter survey of galaxies, we present predictions of the properties of the ATLAS sources in other wave bands.


web science | 2007

The SCUBA HAlf Degree Extragalactic Survey – III. Identification of radio and mid-infrared counterparts to submillimetre galaxies

R. J. Ivison; T. R. Greve; James Dunlop; J. A. Peacock; E. Egami; Ian Smail; E. Ibar; E. van Kampen; I. Aretxaga; T. Babbedge; A. D. Biggs; A. W. Blain; Sydney Chapman; D. L. Clements; K. Coppin; D. Farrah; M. Halpern; David H. Hughes; M. J. Jarvis; T. Jenness; J. R. Jones; A. M. J. Mortier; Seb Oliver; Casey Papovich; P. G. Pérez-González; Alexandra Pope; Steve Rawlings; G. H. Rieke; M. Rowan-Robinson; Richard S. Savage

Determining an accurate position for a submillimetre (submm) galaxy (SMG) is the crucial step that enables us to move from the basic properties of an SMG sample – source counts and 2D clustering – to an assessment of their detailed, multiwavelength properties, their contribution to the history of cosmic star formation and their links with present-day galaxy populations. In this paper, we identify robust radio and/or infrared (IR) counterparts, and hence accurate positions, for over two-thirds of the SCUBA HAlf-Degree Extragalactic Survey (SHADES) Source Catalogue, presenting optical, 24-μm and radio images of each SMG. Observed trends in identification rate have given no strong rationale for pruning the sample. Uncertainties in submm position are found to be consistent with theoretical expectations, with no evidence for significant additional sources of error. Employing the submm/radio redshift indicator, via a parametrization appropriate for radio-identified SMGs with spectroscopic redshifts, yields a median redshift of 2.8 for the radio-identified subset of SHADES, somewhat higher than the median spectroscopic redshift. We present a diagnostic colour–colour plot, exploiting Spitzer photometry, in which we identify regions commensurate with SMGs at very high redshift. Finally, we find that significantly more SMGs have multiple robust counterparts than would be expected by chance, indicative of physical associations. These multiple systems are most common amongst the brightest SMGs and are typically separated by 2–6 arcsec, ~15–50/ sin i kpc at z∼ 2, consistent with early bursts seen in merger simulations.


Monthly Notices of the Royal Astronomical Society | 2010

Galaxy And Mass Assembly (GAMA): The input catalogue and star-galaxy separation

Ivan K. Baldry; Aaron S. G. Robotham; D. T. Hill; Simon P. Driver; J. Liske; Peder Norberg; Steven P. Bamford; Andrew M. Hopkins; Jon Loveday; J. A. Peacock; Ewan Cameron; Scott M. Croom; N. J. G. Cross; I. F. Doyle; S. Dye; Carlos S. Frenk; D. H. Jones; E. van Kampen; Lee S. Kelvin; Robert C. Nichol; H. R. Parkinson; Cristina Popescu; M. Prescott; Rob Sharp; W. Sutherland; Daniel Thomas; Richard J. Tuffs

We describe the spectroscopic target selection for the Galaxy And Mass Assembly (GAMA) survey. The input catalogue is drawn from the Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS). The initial aim is to measure redshifts for galaxies in three 4 ◦ × 12 ◦ regions at 9, 12 and 14.5 h, on the celestial equator, with magnitude selections r< 19.4, z< 18.2 and K AB < 17.6 over all three regions, and r< 19.8 in the 12-h region. The target density is 1080 deg −2 in the 12-h region and 720 deg −2 in the other regions. The average GAMA target density and area are compared with completed and ongoing galaxy redshift surveys. The GAMA survey implements a highly complete star–galaxy separation that jointly uses an intensity-profile separator (� sg = r psf − r model as per the SDSS) and a


Monthly Notices of the Royal Astronomical Society | 2015

Galaxy And Mass Assembly (GAMA): end of survey report and data release 2

J. Liske; Ivan K. Baldry; Simon P. Driver; Richard J. Tuffs; Mehmet Alpaslan; E. Andrae; Sarah Brough; Michelle E. Cluver; M. W. Grootes; M. L. P. Gunawardhana; Lee S. Kelvin; J. Loveday; Aaron S. G. Robotham; Edward N. Taylor; Steven P. Bamford; Joss Bland-Hawthorn; Michael J. I. Brown; Michael J. Drinkwater; Andrew M. Hopkins; Martin Meyer; Peder Norberg; J. A. Peacock; Nicola K. Agius; Stephen K. Andrews; Amanda E. Bauer; J. H. Y. Ching; Matthew Colless; Christopher J. Conselice; Scott M. Croom; Luke J. M. Davies

The Galaxy And Mass Assembly (GAMA) survey is one of the largest contemporary spectroscopic surveys of low redshift galaxies. Covering an area of ∼286 deg2 (split among five survey regions) down to a limiting magnitude of r < 19.8 mag, we have collected spectra and reliable redshifts for 238 000 objects using the AAOmega spectrograph on the Anglo-Australian Telescope. In addition, we have assembled imaging data from a number of independent surveys in order to generate photometry spanning the wavelength range 1 nm–1 m. Here, we report on the recently completed spectroscopic survey and present a series of diagnostics to assess its final state and the quality of the redshift data. We also describe a number of survey aspects and procedures, or updates thereof, including changes to the input catalogue, redshifting and re-redshifting, and the derivation of ultraviolet, optical and near-infrared photometry. Finally, we present the second public release of GAMA data. In this release, we provide input catalogue and targeting information, spectra, redshifts, ultraviolet, optical and near-infrared photometry, single-component Sersic fits, stellar masses, Hα-derived star formation rates, environment information, and group properties for all galaxies with r < 19.0 mag in two of our survey regions, and for all galaxies with r < 19.4 mag in a third region (72 225 objects in total). The data base serving these data is available at http://www.gama-survey.org/.


Monthly Notices of the Royal Astronomical Society | 2011

Galaxy and Mass Assembly (GAMA): The GAMA Galaxy Group Catalogue (G3Cv1)

Aaron S. G. Robotham; Peder Norberg; Simon P. Driver; Ivan K. Baldry; Steven P. Bamford; Andrew M. Hopkins; J. Liske; J. Loveday; Alex Merson; J. A. Peacock; Sarah Brough; Ewan Cameron; Christopher J. Conselice; Scott M. Croom; Carlos S. Frenk; M. L. P. Gunawardhana; D. T. Hill; D. H. Jones; Lee S. Kelvin; K. Kuijken; Robert C. Nichol; H. R. Parkinson; Kevin A. Pimbblet; S. Phillipps; Cristina Popescu; M. Prescott; Rob Sharp; W. Sutherland; Edward N. Taylor; Daniel Thomas

Using the complete Galaxy and Mass Assembly I (GAMA-I) survey covering ∼142 deg2 to rAB= 19.4, of which ∼47 deg2 is to rAB= 19.8, we create the GAMA-I galaxy group catalogue (G3Cv1), generated using a friends-of-friends (FoF) based grouping algorithm. Our algorithm has been tested extensively on one family of mock GAMA lightcones, constructed from Λ cold dark matter N-body simulations populated with semi-analytic galaxies. Recovered group properties are robust to the effects of interlopers and are median unbiased in the most important respects. G3Cv1 contains 14 388 galaxy groups (with multiplicity ≥2), including 44 186 galaxies out of a possible 110 192 galaxies, implying ∼40 per cent of all galaxies are assigned to a group. The similarities of the mock group catalogues and G3Cv1 are multiple: global characteristics are in general well recovered. However, we do find a noticeable deficit in the number of high multiplicity groups in GAMA compared to the mocks. Additionally, despite exceptionally good local spatial completeness, G3Cv1 contains significantly fewer compact groups with five or more members, this effect becoming most evident for high multiplicity systems. These two differences are most likely due to limitations in the physics included of the current GAMA lightcone mock. Further studies using a variety of galaxy formation models are required to confirm their exact origin. The G3Cv1 catalogue will be made publicly available as and when the relevant GAMA redshifts are made available at http://www.gama-survey.org.


Monthly Notices of the Royal Astronomical Society | 2011

Galaxy and Mass Assembly (GAMA): the star formation rate dependence of the stellar initial mass function

M. L. P. Gunawardhana; Andrew M. Hopkins; Rob Sharp; S. Brough; Edward N. Taylor; Joss Bland-Hawthorn; Claudia Maraston; Richard J. Tuffs; Cristina Popescu; D. Wijesinghe; D. H. Jones; Scott M. Croom; Elaine M. Sadler; Stephen M. Wilkins; Simon P. Driver; J. Liske; Peder Norberg; Ivan K. Baldry; Steven P. Bamford; Jon Loveday; J. A. Peacock; Aaron S. G. Robotham; Daniel B. Zucker; Quentin A. Parker; Christopher J. Conselice; Ewan Cameron; Carlos S. Frenk; D. T. Hill; Lee S. Kelvin; K. Kuijken

The stellar initial mass function (IMF) describes the distribution in stellar masses produced from a burst of star formation. For more than 50 yr, the implicit assumption underpinning most areas of research involving the IMF has been that it is universal, regardless of time and environment. We measure the high-mass IMF slope for a sample of low-to-moderate redshift galaxies from the Galaxy and Mass Assembly survey. The large range in luminosities and galaxy masses of the sample permits the exploration of underlying IMF dependencies. A strong IMF–star formation rate dependency is discovered, which shows that highly star-forming galaxies form proportionally more massive stars (they have IMFs with flatter power-law slopes) than galaxies with low star formation rates. This has a significant impact on a wide variety of galaxy evolution studies, all of which rely on assumptions about the slope of the IMF. Our result is supported by, and provides an explanation for, the results of numerous recent explorations suggesting a variation of or evolution in the IMF.


Monthly Notices of the Royal Astronomical Society | 2013

Galaxy And Mass Assembly (GAMA): spectroscopic analysis

Andrew M. Hopkins; Simon P. Driver; Sarah Brough; Matt S. Owers; Amanda E. Bauer; M. L. P. Gunawardhana; Michelle E. Cluver; Matthew Colless; Caroline Foster; M. A. Lara-Lopez; I. G. Roseboom; Rob Sharp; Oliver Steele; Daniel Thomas; Ivan K. Baldry; Michael J. I. Brown; J. Liske; Peder Norberg; Aaron S. G. Robotham; Steven P. Bamford; Joss Bland-Hawthorn; Michael J. Drinkwater; Jon Loveday; Martin Meyer; J. A. Peacock; Richard J. Tuffs; Nicola K. Agius; Mehmet Alpaslan; E. Andrae; E. Cameron

The Galaxy And Mass Assembly (GAMA) survey is a multiwavelength photometric and spectroscopic survey, using the AAOmega spectrograph on the Anglo-Australian Telescope to obtain spectra for up to ∼300 000 galaxies over 280 deg2, to a limiting magnitude of rpet < 19.8 mag. The target galaxies are distributed over 0 < z ≲ 0.5 with a median redshift of z ≈ 0.2, although the redshift distribution includes a small number of systems, primarily quasars, at higher redshifts, up to and beyond z = 1. The redshift accuracy ranges from σv ≈ 50 km s−1 to σv ≈ 100 km s−1 depending on the signal-to-noise ratio of the spectrum. Here we describe the GAMA spectroscopic reduction and analysis pipeline. We present the steps involved in taking the raw two-dimensional spectroscopic images through to flux-calibrated one-dimensional spectra. The resulting GAMA spectra cover an observed wavelength range of 3750 ≲ λ ≲ 8850 A at a resolution of R ≈ 1300. The final flux calibration is typically accurate to 10–20 per cent, although the reliability is worse at the extreme wavelength ends, and poorer in the blue than the red. We present details of the measurement of emission and absorption features in the GAMA spectra. These measurements are characterized through a variety of quality control analyses detailing the robustness and reliability of the measurements. We illustrate the quality of the measurements with a brief exploration of elementary emission line properties of the galaxies in the GAMA sample. We demonstrate the luminosity dependence of the Balmer decrement, consistent with previously published results, and explore further how Balmer decrement varies with galaxy mass and redshift. We also investigate the mass and redshift dependencies of the [N II]/Hα versus [O III]/Hβ spectral diagnostic diagram, commonly used to discriminate between star forming and nuclear activity in galaxies.


Monthly Notices of the Royal Astronomical Society | 2010

AzTEC half square degree survey of the SHADES fields - I. Maps, catalogues and source counts

J. E. Austermann; James Dunlop; T. A. Perera; K. S. Scott; Grant W. Wilson; I. Aretxaga; David H. Hughes; Omar Almaini; Edward L. Chapin; S. C. Chapman; Michele Cirasuolo; D. L. Clements; K. E. K. Coppin; Loretta Dunne; Simon Dye; Stephen Anthony Eales; E. Egami; D. Farrah; D. Ferrusca; Stephen Flynn; D. Haig; M. Halpern; E. Ibar; R. J. Ivison; E. van Kampen; Young-Woon Kang; Sungeun Kim; Cedric G. Lacey; James D. Lowenthal; Philip Daniel Mauskopf

We present the first results from the largest deep extragalactic mm-wavelength survey undertaken to date. These results are derived from maps covering over 0.7 deg2, made at λ= 1.1 mm, using the AzTEC continuum camera mounted on the James Clerk Maxwell Telescope. The maps were made in the two fields originally targeted at λ= 850 μm with the Submillimetre Common-User Bolometer Array (SCUBA) in the SCUBA Half-Degree Extragalactic Survey (SHADES) project, namely the Lockman Hole East (mapped to a depth of 0.9–1.3 mJy rms) and the Subaru/XMM–Newton Deep Field (mapped to a depth of 1.0–1.7 mJy rms). The wealth of existing and forthcoming deep multifrequency data in these two fields will allow the bright mm source population revealed by these new wide-area 1.1 mm images to be explored in detail in subsequent papers. Here, we present the maps themselves, a catalogue of 114 high-significance submillimetre galaxy detections, and a thorough statistical analysis leading to the most robust determination to date of the 1.1 mm source number counts. These new maps, covering an area nearly three times greater than the SCUBA SHADES maps, currently provide the largest sample of cosmological volumes of the high-redshift Universe in the mm or sub-mm. Through careful comparison, we find that both the Cosmic Evolution Survey (COSMOS) and the Great Observatories Origins Deep Survey (GOODS) North fields, also imaged with AzTEC, contain an excess of mm sources over the new 1.1 mm source-count baseline established here. In particular, our new AzTEC/SHADES results indicate that very luminous high-redshift dust enshrouded starbursts (S1.1mm > 3 mJy) are 25–50 per cent less common than would have been inferred from these smaller surveys, thus highlighting the potential roles of cosmic variance and clustering in such measurements. We compare number count predictions from recent models of the evolving mm/sub-mm source population to these sub-mm bright galaxy surveys, which provide important constraints for the ongoing refinement of semi-analytic and hydrodynamical models of galaxy formation, and find that all available models overpredict the number of bright submillimetre galaxies found in this survey.


Monthly Notices of the Royal Astronomical Society | 2012

Galaxy and Mass Assembly (GAMA): ugriz galaxy luminosity functions

Jon Loveday; Peder Norberg; Ivan K. Baldry; Simon P. Driver; Andrew M. Hopkins; J. A. Peacock; Steven P. Bamford; J. Liske; Joss Bland-Hawthorn; Sarah Brough; Michael J. I. Brown; Ewan Cameron; Christopher J. Conselice; Scott M. Croom; Carlos S. Frenk; M. L. P. Gunawardhana; D. T. Hill; D. H. Jones; Lee S. Kelvin; K. Kuijken; Robert C. Nichol; H. R. Parkinson; S. Phillipps; Kevin A. Pimbblet; Cristina Popescu; M. Prescott; Aaron S. G. Robotham; Rob Sharp; W. Sutherland; Edward N. Taylor

Galaxy and Mass Assembly (GAMA) is a project to study galaxy formation and evolution, combining imaging data from ultraviolet to radio with spectroscopic data from the AAOmega spectrograph on the Anglo-Australian Telescope. Using data from Phase 1 of GAMA, taken over three observing seasons, and correcting for various minor sources of incompleteness, we calculate galaxy luminosity functions (LFs) and their evolution in the ugriz passbands. At low redshift, z < 0.1, we find that blue galaxies, defined according to a magnitude-dependent but non-evolving colour cut, are reasonably well fitted over a range of more than 10 magnitudes by simple Schechter functions in all bands. Red galaxies, and the combined blue plus red sample, require double power-law Schechter functions to fit a dip in their LF faintwards of the characteristic magnitude M* before a steepening faint end. This upturn is at least partly due to dust-reddened disc galaxies. We measure the evolution of the galaxy LF over the redshift range 0.002 < z < 0.5 both by using a parametric fit and by measuring binned LFs in redshift slices. The characteristic luminosity L* is found to increase with redshift in all bands, with red galaxies showing stronger luminosity evolution than blue galaxies. The comoving number density of blue galaxies increases with redshift, while that of red galaxies decreases, consistent with prevailing movement from blue cloud to red sequence. As well as being more numerous at higher redshift, blue galaxies also dominate the overall luminosity density beyond redshifts z≃ 0.2. At lower redshifts, the luminosity density is dominated by red galaxies in the riz bands, and by blue galaxies in u and g.

Collaboration


Dive into the E. van Kampen's collaboration.

Top Co-Authors

Avatar

Ivan K. Baldry

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Simon P. Driver

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew M. Hopkins

Australian Astronomical Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lee S. Kelvin

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar

Aaron S. G. Robotham

University of Western Australia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Liske

European Southern Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge