E. Vannuccini
University of Florence
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. Vannuccini.
Nature | 2009
O. Adriani; G. C. Barbarino; G. A. Bazilevskaya; R. Bellotti; M. Boezio; E. A. Bogomolov; L. Bonechi; M. Bongi; V. Bonvicini; S. Bottai; A. Bruno; F. Cafagna; D. Campana; Per Carlson; M. Casolino; G. Castellini; M. P. De Pascale; G. De Rosa; N. De Simone; V. Di Felice; A. M. Galper; L. Grishantseva; P. Hofverberg; S. V. Koldashov; S. Y. Krutkov; A. Leonov; V. Malvezzi; L. Marcelli; W. Menn; V. V. Mikhailov
Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium, which is referred to as a ‘secondary source’. Positrons might also originate in objects such as pulsars and microquasars or through dark matter annihilation, which would be ‘primary sources’. Previous statistically limited measurements of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5–100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.
Nature | 2008
O. Adriani; G. C. Barbarino; G. De Rosa; A. M. Galper; G. Vasilyev; Y. T. Yurkin; P. Carlson; M. Simon; S. V. Koldashov; M. Pearce; A. Leonov; M. Boezio; A. Bruno; S. Orsi; Bonvicini; M. Bongi; L. Bonechi; N. Zampa; Mikhailov; P. Spillantini; S. B. Ricciarini; E. Vannuccini; P. Papini; G. A. Bazilevskaya; F. Cafagna; P. Picozza; G. Osteria; N. De Simone; S. Bottai; L. Marcelli
Antiparticles account for a small fraction of cosmic rays and are known to be produced in interactions between cosmic-ray nuclei and atoms in the interstellar medium, which is referred to as a ‘secondary source’. Positrons might also originate in objects such as pulsars and microquasars or through dark matter annihilation, which would be ‘primary sources’. Previous statistically limited measurements of the ratio of positron and electron fluxes have been interpreted as evidence for a primary source for the positrons, as has an increase in the total electron+positron flux at energies between 300 and 600 GeV (ref. 8). Here we report a measurement of the positron fraction in the energy range 1.5–100 GeV. We find that the positron fraction increases sharply over much of that range, in a way that appears to be completely inconsistent with secondary sources. We therefore conclude that a primary source, be it an astrophysical object or dark matter annihilation, is necessary.
Physical Review Letters | 2009
O. Adriani; G. C. Barbarino; G. A. Bazilevskaya; R. Bellotti; M. Boezio; Edward Bogomolov; L. Bonechi; M. Bongi; V. Bonvicini; S. Bottai; A. Bruno; F. Cafagna; D. Campana; P. Carlson; M. Casolino; G. Castellini; M. P. De Pascale; G. De Rosa; D. Fedele; A. M. Galper; L. Grishantseva; P. Hofverberg; A. Leonov; S. V. Koldashov; S. Y. Krutkov; V. Malvezzi; L. Marcelli; W. Menn; V. V. Mikhailov; M. Minori
A new measurement of the cosmic-ray antiproton-to-proton flux ratio between 1 and 100 GeV is presented. The results were obtained with the PAMELA experiment, which was launched into low-Earth orbit on-board the Resurs-DK1 satellite on June 15th 2006. During 500 days of data collection a total of about 1000 antiprotons have been identified, including 100 above an energy of 20 GeV. The high-energy results are a tenfold improvement in statistics with respect to all previously published data. The data follow the trend expected from secondary production calculations and significantly constrain contributions from exotic sources, e.g., dark matter particle annihilations.
Physical Review Letters | 2010
O. Adriani; G. C. Barbarino; G. A. Bazilevskaya; Roberto Bellotti; M. Boezio; E. A. Bogomolov; L. Bonechi; M. Bongi; V. Bonvicini; S. Borisov; S. Bottai; A. Bruno; F. Cafagna; D. Campana; R. Carbone; Per Carlson; M. Casolino; G. Castellini; L. Consiglio; M. P. De Pascale; C. De Santis; N. De Simone; V. Di Felice; A. M. Galper; W. Gillard; L. Grishantseva; P. Hofverberg; G. Jerse; A. V. Karelin; S. V. Koldashov
The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray antiproton flux and the antiproton-to-proton flux ratio which extends previously published measurements down to 60 MeV and up to 180 GeV in kinetic energy. During 850 days of data acquisition approximately 1500 antiprotons were observed. The measurements are consistent with purely secondary production of antiprotons in the Galaxy. More precise secondary production models are required for a complete interpretation of the results.
Astroparticle Physics | 2007
P. Picozza; Guido Castellini; O. Adriani; F. Altamura; M. Ambriola; A. Basili; R. Bencardino; M. Boezio; L. Bonechi; M. Bongi; L. Bongiorno; V. Bonvicini; F. Cafagna; D. Campana; P. Carlson; M. Casolino; G. De Rosa; D. Fedele; P. Hofverberg; J. Lund; J. Lundquist; O. Maksumov; V. Malvezzi; L. Marcelli; W. Menn; M. Minori; S. Misin; E. Mocchiutti; A. Morselli; G. Osteria
PAMELA is a satellite-borne experiment designed for precision studies of the charged cosmic radiation. The primary scientific goal is the study of the antimatter component of the cosmic radiation (antiprotons, 80 MeV - 190 GeV; and positrons, 50 MeV - 270 GeV) in order to search for evidence of dark matter particle annihilations. PAMELA will also search for primordial antinuclei (in particular, anti-helium), and test cosmic-ray propagation models through precise measurements of the antiparticle energy spectrum and studies of light nuclei and their isotopes. Concomitant goals include a study of solar physics and solar modulation during the 24th solar minimum by investigating low energy particles in the cosmic radiation; and a reconstruction of the cosmic ray electron energy spectrum up to several TeV thereby allowing a possible contribution from local sources to be studied. PAMELA is housed on-board the Russian Resurs-DKl satellite, which was launched on June 15th 2006 in an elliptical (350-600 km altitude) orbit with an inclination of 70 degrees. PAMELA consists of a permanent magnet spectrometer, to provide rigidity and charge sign information; a Time-of-Flight and trigger system, for velocity and charge determination; a silicon-tungsten calorimeter, for lepton/hadron discrimination; and a neutron detector. An anticoincidence system is used offline to reject false triggers. In this article the PAMELA experiment and its status are reviewed. A preliminary discussion of data recorded in-orbit is also presented.
Physical Review Letters | 2011
O. Adriani; G. C. Barbarino; G. A. Bazilevskaya; R. Bellotti; M. Boezio; E. A. Bogomolov; M. Bongi; V. Bonvicini; S. Borisov; S. Bottai; A. Bruno; F. Cafagna; D. Campana; R. Carbone; P. Carlson; M. Casolino; G. Castellini; L. Consiglio; M. P. De Pascale; C. De Santis; N. De Simone; V. Di Felice; A. M. Galper; W. Gillard; L. Grishantseva; G. Jerse; A. V. Karelin; S. V. Koldashov; S. Y. Krutkov; A. Leonov
Precision measurements of the electron component in the cosmic radiation provide important information about the origin and propagation of cosmic rays in the Galaxy. Here we present new results regarding negatively charged electrons between 1 and 625 GeV performed by the satellite-borne experiment PAMELA. This is the first time that cosmic-ray e⁻ have been identified above 50 GeV. The electron spectrum can be described with a single power-law energy dependence with spectral index -3.18 ± 0.05 above the energy region influenced by the solar wind (> 30 GeV). No significant spectral features are observed and the data can be interpreted in terms of conventional diffusive propagation models. However, the data are also consistent with models including new cosmic-ray sources that could explain the rise in the positron fraction.
Physical Review Letters | 2013
Oscar Adriani; G. C. Barbarino; G. A. Bazilevskaya; R. Bellotti; A. Bianco; M. Boezio; E. A. Bogomolov; M. Bongi; V. Bonvicini; S. Bottai; A. Bruno; F. Cafagna; D. Campana; R. Carbone; P. Carlson; M. Casolino; G. Castellini; C. De Donato; C. De Santis; N. De Simone; V. Di Felice; V. Formato; A. M. Galper; A. V. Karelin; S. V. Koldashov; S. Koldobskiy; S. Y. Krutkov; A. Leonov; V. Malakhov; L. Marcelli
Precision measurements of the positron component in the cosmic radiation provide important information about the propagation of cosmic rays and the nature of particle sources in our Galaxy. The satellite-borne experiment PAMELA has been used to make a new measurement of the cosmic-ray positron flux and fraction that extends previously published measurements up to 300 GeV in kinetic energy. The combined measurements of the cosmic-ray positron energy spectrum and fraction provide a unique tool to constrain interpretation models. During the recent solar minimum activity period from July 2006 to December 2009, approximately 24,500 positrons were observed. The results cannot be easily reconciled with purely secondary production, and additional sources of either astrophysical or exotic origin may be required.
The Astrophysical Journal | 2001
M. Boezio; V. Bonvicini; P. Schiavon; A. Vacchi; N. Zampa; D. Bergström; P. Carlson; Tom Francke; S. Grinstein; M. Suffert; M. Hof; J. Kremer; W. Menn; M. Simon; S. A. Stephens; M. Ambriola; R. Bellotti; F. Cafagna; F. Ciacio; M. Circella; C. De Marzo; N. Finetti; P. Papini; S. Piccardi; P. Spillantini; E. Vannuccini; S. Bartalucci; M. Ricci; M. Casolino; M. P. De Pascale
We report on a new measurement of the cosmic ray antiproton spectrum. The data were collected by the balloon-borne experiment CAPRICE98 which was flown on 28-29 May 1998 from Fort Sumner, New Mexico, USA. The experiment used the NMSU-WIZARD/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov (RICH) detector, a time-of-flight system, a tracking device consisting of drift chambers and a superconducting magnet and a silicon-tungsten calorimeter. The RICH detector was the first ever flown capable of mass-resolving charge-one particles at energies above 5 GeV. A total of 31 antiprotons with rigidities between 4 and 50 GV at the spectrometer were identified with small backgrounds from other particles. The absolute antiproton energy spectrum was determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV. We found that the observed antiproton spectrum and the antiproton-to-proton ratio are consistent with a pure secondary origin. However, a primary component may not be excluded.We report on a new measurement of the cosmic ray antiproton spectrum. The data were collected by the balloon-borne experiment CAPRICE98, which was —own on 1998 May 28¨29 from Fort Sumner, New Mexico. The experiment used the NMSU-WiZard/CAPRICE98 balloon-borne magnet spectrometer equipped with a gas Ring Imaging Cherenkov (RICH) detector, a time-of-—ight system, a tracking device consisting of drift chambers and a superconducting magnet, and a silicon-tungsten calorimeter. The RICH detector was the —rst ever —own capable of mass-resolving charge-one particles at energies above 5 GeV. A total of 31 antiprotons with rigidities between 4 and 50 GV at the spectrometer were identi—ed with small backgrounds from other particles. The absolute antiproton energy spectrum was determined in the kinetic energy region at the top of the atmosphere between 3.2 and 49.1 GeV. We found that the observed antiproton spectrum and the antiproton-to-proton ratio are consistent with a pure secondary origin. However, a primary component may not be excluded.
Astroparticle Physics | 2010
O. Adriani; G. C. Barbarino; G. A. Bazilevskaya; R. Bellotti; M. Boezio; E. A. Bogomolov; L. Bonechi; M. Bongi; V. Bonvicini; S. Borisov; S. Bottai; A. Bruno; F. Cafagna; D. Campana; R. Carbone; Per Carlson; M. Casolino; G. Castellini; L. Consiglio; M. P. De Pascale; C. De Santis; N. De Simone; V. Di Felice; A. M. Galper; W. Gillard; L. Grishantseva; P. Hofverberg; G. Jerse; S. V. Koldashov; S. Y. Krutkov
The PAMELA satellite experiment has measured the cosmic-ray positron fraction between 1.5 GeV and 100 GeV. The need to reliably discriminate between the positron signal and proton background has required the development of an ad hoc analysis procedure. In this paper, a method for positron identification is described and its stability and capability to yield a correct background estimate is shown. The analysis includes new experimental data, the application of three different fitting techniques for the background sample and an estimate of systematic uncertainties due to possible inaccuracies in the background selection. The new experimental results confirm both solar modulation effects on cosmic-rays with low rigidities and an anomalous positron abundance above 10 GeV.
Astroparticle Physics | 2003
M. Boezio; V. Bonvicini; P. Schiavon; A. Vacchi; N. Zampa; D. Bergström; P. Carlson; T. Francke; P. Hansen; E. Mocchiutti; M. Suffert; M. Hof; J. Kremer; W. Menn; M. Simon; M. Ambriola; R. Bellotti; F. Cafagna; F. Ciacio; M. Circella; C. De Marzo; N. Finetti; P. Papini; S. Piccardi; P. Spillantini; E. Vannuccini; S. Bartalucci; M. Ricci; M. Casolino; M. P. De Pascale
A new measurement of the primary cosmic-ray proton and helium fluxes from 3 to 350 GeV was carried out by the balloon-borne CAPRICE experiment in 1998. This experimental setup combines different detector techniques and has excellent particle discrimination capabilities allowing clear particle identification. Our experiment has the capability to determine accurately detector selection efficiencies and systematic errors associated with them. Furthermore, it can check for the first time the energy determined by the magnet spectrometer by using the Cherenkov angle measured by the RICH detector well above 20 GeV n � 1 . The analysis of the primary proton and helium components is described here and the results are compared with other recent measurements using other magnet spectrometers. The observed energy