Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Vigren is active.

Publication


Featured researches published by E. Vigren.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Aerosol growth in Titan’s ionosphere

P. Lavvas; Roger V. Yelle; T. T. Koskinen; Axel Bazin; V. Vuitton; E. Vigren; M. Galand; Anne Wellbrock; A. J. Coates; Jan-Erik Wahlund; Frank Judson Crary; D. Snowden

Photochemically produced aerosols are common among the atmospheres of our solar system and beyond. Observations and models have shown that photochemical aerosols have direct consequences on atmospheric properties as well as important astrobiological ramifications, but the mechanisms involved in their formation remain unclear. Here we show that the formation of aerosols in Titan’s upper atmosphere is directly related to ion processes, and we provide a complete interpretation of observed mass spectra by the Cassini instruments from small to large masses. Because all planetary atmospheres possess ionospheres, we anticipate that the mechanisms identified here will be efficient in other environments as well, modulated by the chemical complexity of each atmosphere.


Geophysical Research Letters | 2015

Spatial distribution of low-energy plasma around comet 67P/CG from Rosetta measurements

Niklas J. T. Edberg; Anders Eriksson; Elias Odelstad; P. Henri; J.-P. Lebreton; Sébastien Gasc; Martin Rubin; Mats André; R. Gill; Erik P. G. Johansson; F. L. Johansson; E. Vigren; Jan-Erik Wahlund; C. M. Carr; E. Cupido; K.-H. Glassmeier; R. Goldstein; C. Koenders; K. Mandt; Z. Nemeth; H. Nilsson; I. Richter; G. Stenberg Wieser; K. Szego; M. Volwerk

We use measurements from the Rosetta plasma consortium (RPC) Langmuir probe (LAP) and mutual impedance probe (MIP) to study the spatial distribution of low-energy plasma in the near-nucleus coma of comet 67P/Churyumov-Gerasimenko. The spatial distribution is highly structured with the highest density in the summer hemisphere and above the region connecting the two main lobes of the comet, i.e. the neck region. There is a clear correlation with the neutral density and the plasma to neutral density ratio is found to be ∼1-2·10 −6 , at a cometocentric distance of 10 km and at 3.1 AU from the sun. A clear 6.2 h modulation of the plasma is seen as the neck is exposed twice per rotation. The electron density of the collisonless plasma within 260 km from the nucleus falls of with radial distance as ∼1/r. The spatial structure indicates that local ionization of neutral gas is the dominant source of low-energy plasma around the comet.


Geophysical Research Letters | 2015

Evolution of the plasma environment of comet 67P from spacecraft potential measurements by the Rosetta Langmuir probe instrument

Elias Odelstad; Anders Eriksson; Niklas J. T. Edberg; F. L. Johansson; E. Vigren; Mats André; Chia-Yu Tzou; C. M. Carr; E. Cupido

We study the evolution of the plasma environment of comet 67P using measurements of the spacecraft potential from early September 2014 (heliocentric distance 3.5 AU) to late March 2015 (2.1 AU) obt ...


The Astrophysical Journal | 2013

PREDICTIONS OF ION PRODUCTION RATES AND ION NUMBER DENSITIES WITHIN THE DIAMAGNETIC CAVITY OF COMET 67P/CHURYUMOV-GERASIMENKO AT PERIHELION

E. Vigren; M. Galand

We present a one-dimensional ion chemistry model of the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko, the target comet for the ESA Rosetta mission. We solve the continuity equations for ionospheric species and predict number densities of electrons and selected ions considering only gas-phase reactions. We apply the model to the subsolar direction and consider conditions expected to be encountered by Rosetta at perihelion (1.29 AU) in 2015 August. Our default simulation predicts a maximum electron number density of {approx}8 Multiplication-Sign 10{sup 4} cm{sup -3} near the surface of the comet, while the electron number densities for cometocentric distances r > 10 km are approximately proportional to 1/r {sup 1.23} assuming that the electron temperature is equal to the neutral temperature. We show that even a small mixing ratio ({approx}0.3%-1%) of molecules having higher proton affinity than water is sufficient for the proton transfer from H{sub 3}O{sup +} to occur so readily that other ions than H{sub 3}O{sup +}, such as NH{sub 4} {sup +} or CH{sub 3}OH{sub 2} {sup +}, become dominant in terms of volume mixing ratio in part of, if not throughout, the diamagnetic cavity. Finally, we test how the predicted electron and ion densities are influenced by changesmorexa0» of model input parameters, including the neutral background, the impinging EUV solar spectrum, the solar zenith angle, the cross sections for photo- and electron-impact processes, the electron temperature profile, and the temperature dependence of ion-neutral reactions.«xa0less


Journal of Geophysical Research | 2015

The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data

J. Cui; M. Galand; Shichun Zhang; E. Vigren; Hong Zou

We propose a revised Chapman model for the ionosphere of Mars by allowing for vertical variation of electron temperature. An approximate energy balance between solar EUV heating and CO2 collisional cooling is applied in the dayside Martian ionosphere, analogous to the method recently proposed by Withers et al. (2014). The essence of the model is to separate the contributions of the neutral and electron thermal structures to the apparent width of the main ionospheric layer. Application of the model to the electron density profiles from the Mars Global Surveyor (MGS) radio occultation measurements reveals a clear trend of elevated electron temperature with increasing solar zenith angle (SZA). It also reveals that the characteristic length scale for the change of electron temperature with altitude decreases with increasing SZA. These observations may imply enhanced topside heat influx near the terminator, presumably an outcome of the solar wind interactions with the Martian upper atmosphere. Our analysis also reveals a tentative asymmetry in electron temperature between the northern and southern hemispheres, consistent with the scenario of elevated electron temperature within minimagnetospheres.


Journal of Geophysical Research | 2016

Solar wind interaction with comet 67P: Impacts of corotating interaction regions

Niklas J. T. Edberg; Anders Eriksson; Elias Odelstad; E. Vigren; D. J. Andrews; F. L. Johansson; J. L. Burch; C. M. Carr; E. Cupido; K.-H. Glassmeier; R. Goldstein; J. S. Halekas; P. Henri; C. Koenders; K. Mandt; P. Mokashi; Z. Nemeth; H. Nilsson; Robin Ramstad; I. Richter; G. Stenberg Wieser

We present observations from the Rosetta Plasma Consortium of the effects of stormy solar wind on comet 67P/Churyumov-Gerasimenko. Four corotating interaction regions (CIRs), where the first event has possibly merged with a coronal mass ejection, are traced from Earth via Mars (using Mars Express and Mars Atmosphere and Volatile EvolutioN mission) to comet 67P from October to December 2014. When the comet is 3.1–2.7 AU from the Sun and the neutral outgassing rate ∼1025–1026 s−1, the CIRs significantly influence the cometary plasma environment at altitudes down to 10–30 km. The ionospheric low-energy (∼5 eV) plasma density increases significantly in all events, by a factor of >2 in events 1 and 2 but less in events 3 and 4. The spacecraft potential drops below −20 V upon impact when the flux of electrons increases. The increased density is likely caused by compression of the plasma environment, increased particle impact ionization, and possibly charge exchange processes and acceleration of mass-loaded plasma back to the comet ionosphere. During all events, the fluxes of suprathermal (∼10–100 eV) electrons increase significantly, suggesting that the heating mechanism of these electrons is coupled to the solar wind energy input. At impact the magnetic field strength in the coma increases by a factor of 2–5 as more interplanetary magnetic field piles up around the comet. During two CIR impact events, we observe possible plasma boundaries forming, or moving past Rosetta, as the strong solar wind compresses the cometary plasma environment. We also discuss the possibility of seeing some signatures of the ionospheric response to tail disconnection events.


The Astrophysical Journal | 2015

ON THE ELECTRON-TO-NEUTRAL NUMBER DENSITY RATIO IN THE COMA OF COMET 67P/CHURYUMOV–GERASIMENKO: GUIDING EXPRESSION AND SOURCES FOR DEVIATIONS

E. Vigren; M. Galand; Anders Eriksson; Niklas J. T. Edberg; Elias Odelstad; S. J. Schwartz

We compute partial photoionization frequencies of H2O, CO2, and CO, the major molecules in the coma of comet 67P/Churyumov-Gerasimenko, the target comet of the ongoing ESA Rosetta mission. Values a ...


Science | 2018

In situ measurements of Saturn’s ionosphere show that it is dynamic and interacts with the rings

J.-E. Wahlund; M. W. Morooka; L. Z. Hadid; A. M. Persoon; W. M. Farrell; D. A. Gurnett; G. B. Hospodarsky; W. S. Kurth; S.-Y. Ye; D. J. Andrews; Niklas J. T. Edberg; Anders Eriksson; E. Vigren

Cassini enters Saturns ionosphere The upper reaches of most planetary atmospheres contain a layer that is ionized by incoming solar radiation—the ionosphere. As it went through its final orbits around Saturn, the Cassini spacecraft dipped close enough to the planet to pass directly through the ionosphere. Wahlund et al. examined the plasma data collected in situ and found that Saturns ionosphere is highly variable and interacts with the planets inner ring. They also observed decreases in ionization within regions shaded from the Sun by the rings. Science, this issue p. 66 The Cassini spacecraft has flown through Saturn’s ionosphere, which is highly variable and affected by the planet’s rings. The ionized upper layer of Saturn’s atmosphere, its ionosphere, provides a closure of currents mediated by the magnetic field to other electrically charged regions (for example, rings) and hosts ion-molecule chemistry. In 2017, the Cassini spacecraft passed inside the planet’s rings, allowing in situ measurements of the ionosphere. The Radio and Plasma Wave Science instrument detected a cold, dense, and dynamic ionosphere at Saturn that interacts with the rings. Plasma densities reached up to 1000 cubic centimeters, and electron temperatures were below 1160 kelvin near closest approach. The density varied between orbits by up to two orders of magnitude. Saturn’s A- and B-rings cast a shadow on the planet that reduced ionization in the upper atmosphere, causing a north-south asymmetry.


The Astronomical Journal | 2016

Model-Observation Comparisons of Electron Number Densities in the Coma of 67P/Churyumov–Gerasimenko During 2015 January

E. Vigren; Kathrin Altwegg; Niklas J. T. Edberg; Anders Eriksson; M. Galand; P. Henri; Fredrik Johansson; Elias Odelstad; Chia-Yu Tzou; X. Vallières

During 2015 January 9–11, at a heliocentric distance of ~2.58–2.57 au, the ESA Rosetta spacecraft resided at a cometocentric distance of ~28 km from the nucleus of comet 67P/Churyumov–Gerasimenko, sweeping the terminator at northern latitudes of 43°N–58°N. Measurements by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure Sensor (ROSINA/COPS) provided neutral number densities. We have computed modeled electron number densities using the neutral number densities as input into a Field Free Chemistry Free model, assuming H2O dominance and ion-electron pair formation by photoionization only. A good agreement (typically within 25%) is found between the modeled electron number densities and those observed from measurements by the Mutual Impedance Probe (RPC/MIP) and the Langmuir Probe (RPC/LAP), both being subsystems of the Rosetta Plasma Consortium. This indicates that ions along the nucleus-spacecraft line were strongly coupled to the neutrals, moving radially outward with about the same speed. Such a statement, we propose, can be further tested by observations of H3O+/H2O+ number density ratios and associated comparisons with model results.


Journal of Geophysical Research | 2015

Influence of local ionization on ionospheric densities in Titan's upper atmosphere

Luc B. M. Sagnières; M. Galand; J. Cui; P. Lavvas; E. Vigren; V. Vuitton; Roger V. Yelle; Anne Wellbrock; A. J. Coates

Titan has the most chemically complex ionosphere of the solar system. The main sources of ions on the dayside are ionization by EUV solar radiation and on the nightside include ionization by precip ...

Collaboration


Dive into the E. Vigren's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Niklas J. T. Edberg

Swedish Institute of Space Physics

View shared research outputs
Top Co-Authors

Avatar

M. Galand

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

Elias Odelstad

Swedish Institute of Space Physics

View shared research outputs
Top Co-Authors

Avatar

P. Henri

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

F. L. Johansson

Swedish Institute of Space Physics

View shared research outputs
Top Co-Authors

Avatar

J.-E. Wahlund

Swedish Institute of Space Physics

View shared research outputs
Top Co-Authors

Avatar

H. Nilsson

Swedish Institute of Space Physics

View shared research outputs
Top Co-Authors

Avatar

C. M. Carr

Imperial College London

View shared research outputs
Top Co-Authors

Avatar

D. J. Andrews

Swedish Institute of Space Physics

View shared research outputs
Researchain Logo
Decentralizing Knowledge