Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E.W. Overstrom is active.

Publication


Featured researches published by E.W. Overstrom.


Nature Biotechnology | 1999

Production of goats by somatic cell nuclear transfer

Alexander Baguisi; Esmail Behboodi; David Melican; Julie Pollock; Margaret M. Destrempes; Christine Cammuso; Jennifer L. Williams; Scott Nims; Catherine A. Porter; Patricia Midura; Monica J. Palacios; Sandra L. Ayres; R.S. Denniston; Michael L. Hayes; Carol Ziomek; Harry M. Meade; R.A. Godke; William G. Gavin; E.W. Overstrom; Yann Echelard

In this study, we demonstrate the production of transgenic goats by nuclear transfer of fetal somatic cells. Donor karyoplasts were obtained from a primary fetal somatic cell line derived from a 40-day transgenic female fetus produced by artificial insemination of a nontransgenic adult female with semen from a transgenic male. Live offspring were produced with two nuclear transfer procedures. In one protocol, oocytes at the arrested metaphase II stage were enucleated, electrofused with donor somatic cells, and simultaneously activated. In the second protocol, activated in vivo oocytes were enucleated at the telophase II stage, electrofused with donor somatic cells, and simultaneously activated a second time to induce genome reactivation. Three healthy identical female offspring were born. Genotypic analyses confirmed that all cloned offspring were derived from the donor cell line. Analysis of the milk of one of the transgenic cloned animals showed high-level production of human antithrombin III, similar to the parental transgenic line.


Biology of Reproduction | 2003

Distinctions in Meiotic Spindle Structure and Assembly During In Vitro and In Vivo Maturation of Mouse Oocytes

Alexandra Sanfins; Gloria Y. Lee; Carlos E. Plancha; E.W. Overstrom; David F. Albertini

Abstract To better understand the differences in cytoskeletal organization between in vivo (IVO) and in vitro (IVM) matured oocytes, we analyzed remodeling of the centrosome-microtubule complex in IVO and IVM mouse oocytes. Fluorescence imaging revealed dramatic differences in meiotic spindle assembly and organization between these two populations. Metaphase spindles at both meiosis I (M-I) and meiosis II (M-II) in IVO oocytes were compact, displayed focused spindle poles with distinct γ-tubulin foci, and were composed of acetylated microtubules. In contrast, IVM oocytes exhibited barrel-shaped spindles with fewer acetylated microtubules and γ-tubulin diffusely distributed throughout the spindle proper. With respect to meiotic progression, IVO oocytes were more synchronous in the rate and extent of anaphase to telophase of M-I and first polar body emission than were IVM counterparts. Furthermore, IVO oocytes showed a twofold increase in cytoplasmic microtubule organizing centers (MTOCs), and constitutive MTOC proteins (γ-tubulin and pericentrin) were excluded from the first polar body. Inclusion of MTOC constitutive proteins in the polar body and diminished number of cytoplasmic MTOCs was observed in IVM oocytes. These findings were corroborated in IVO oocytes obtained from naturally ovulated and spontaneously cycling mice and highlight a fundamental distinction in the spatial and temporal regulation of microtubule dynamics between IVO and IVM oocytes


Biology of Reproduction | 2003

Cloned Mice Derived from Embryonic Stem Cell Karyoplasts and Activated Cytoplasts Prepared by Induced Enucleation

B. Gasparrini; Shaorong Gao; A. Ainslie; Judy Fletcher; Michelle McGarry; William A. Ritchie; Anthea Springbett; E.W. Overstrom; Ian Wilmut; P.A. De Sousa

Abstract Our objective was to induce enucleation (IE) of activated mouse oocytes to yield cytoplasts capable of supporting development following nuclear transfer. Fluorescence microscopy for microtubules, microfilaments, and DNA was used to evaluate meiotic resumption after ethanol activation and the effect of subsequent transient treatments with 0.4 μg/ml of demecolcine. Using oocytes from B6D2F1 (C57BL/6 × DBA/2) donors, the success of IE of chromatin into polar bodies (PBs) was dependent on the duration of demecolcine treatment and the time that such treatment was initiated after activation. Similarly, variations in demecolcine treatment altered the proportions of oocytes exhibiting a reversible compartmentalization of chromatin into PBs. Treatment for 15 min begun immediately after activation yielded an optimized IE rate of 21% (n = 80) when oocytes were evaluated after overnight recovery in culture. With this protocol, 30–50% of oocytes were routinely scored as compartmentalized when assessed 90 min postactivation. No oocytes could be scored as such following overnight recovery, with 66% of treated oocytes cleaving to the 2-cell stage (n = 80). Activated cytoplasts were prepared by mechanical removal of PBs from oocytes whose chromatin had undergone IE or compartmentalization. These cytoplasts were compared with mechanically enucleated, metaphase (M) II cytoplasts whose activation was delayed in nuclear transfer experiments using HM-1 embryonic stem cells. Using oocytes from either B6D2F1 or B6CBAF1 (C57BL/6 × CBA) donors, the in vitro development of cloned embryos using activated cytoplasts was consistently inferior to that observed using MII cytoplasts. Live offspring were derived from both oocyte strains using the latter, whereas a single living mouse was cloned from activated B6CBAF1 cytoplasts.


Theriogenology | 1996

In vitro assessment of embryo viability

E.W. Overstrom

Abstract With the advent and increasing adoption of methodologies to manipulate the mammalian embryo in vitro, increased emphasis is being placed on the predictive assessment of embryo viability in vitro. The development of viability assays that objectively measure the developmental competence of individual embryos will augment and accelerate selective genetic improvement of livestock through the use of embryo transfer, cryopreservation, genetic manipulation and in vitro embryo production procedures. The rationale, objective requirements and development of current methodologies used to assess embryo viability in vitro are reviewed. The specific advantages/limitations and application of several methodologies are discussed, and a novel multi-parametric evaluation strategy is proposed. The further development of novel or existing viability tests, that are rapid, non-perturbing, objective and of high resolution, will enhance success of in vitro embryo manipulation procedures, will improve the success of bovine embryo transfer programs, and will have potential application in exotic zoo/wildlife species and in human infertility programs.


Biology of Reproduction | 2003

Demecolcine-Induced Oocyte Enucleation for Somatic Cell Cloning: Coordination Between Cell-Cycle Egress, Kinetics of Cortical Cytoskeletal Interactions, and Second Polar Body Extrusion

Elena Ibáñez; David F. Albertini; E.W. Overstrom

Abstract Studies were designed to further explore the use of pharmacological agents to produce developmentally competent enucleated mouse oocytes for animal cloning by somatic cell nuclear transfer. Metaphase II oocytes from CF-1 and B6D2F1 strains were activated with ethanol and subsequently exposed to demecolcine at various times postactivation. Chromosome segregation, spindle dynamics, and polar body (PB) extrusion were monitored by fluorescence microscopy using DNA-, microtubule-, and microfilament-selective probes. Exposure to demecolcine did not affect rates of oocyte activation induced by ethanol but did disrupt the coordination of cytokinesis and karyokinesis, suppressing the extent and completion of spindle rotation and second PB extrusion in a strain-dependent manner. Moreover, strain- and treatment-specific variations in the rate of oocyte enucleation were also detected. In particular, CF1 oocytes were more efficiently enucleated relative to B6D2F1 oocytes, and demecolcine treatments initiated early after activation resulted in higher enucleation rates than when treatment was delayed. The observed strain differences are possibly caused by a combination of factors, such as the time course of meiotic cell-cycle progression after ethanol activation, the degree of spindle rotation, and the extent of second PB extrusion. These results suggest that developmentally competent cytoplasts can be produced by timely exposure of activated oocytes to agents that disrupt spindle microtubules. However, the utility of the demecolcine-induced enucleation protocol will require further investigation into factors linking karyokinesis to cytokinesis at the levels of cell-cycle control and oocyte cytoskeletal remodeling following artificial or natural means of egg activation.


Reproduction | 2000

Effects of superovulated heifer diet type and quantity on relative mRNA abundances and pyruvate metabolism in recovered embryos.

C Wrenzycki; P.A. De Sousa; E.W. Overstrom; R.T. Duby; D Herrmann; Andrew J. Watson; H Niemann; D. O'Callaghan; M.P. Boland

This study investigated the effects of quantity and type of diet fed to superovulated donor heifers on molecular and metabolic indices of embryonic development. These effects included the relative abundances of mRNAs for the alpha 1 subunit of Na/K-ATPase and the antioxidant enzyme Cu/Zn-SOD, as well as pyruvate utilization in bovine morulae and blastocysts developed in vivo. Heifers were fed a daily ration of either grass silage and a citrus-beet pulp-based concentrate or grass silage and a barley-based concentrate for 116 days, both at 3 kg per day or ad libitum. In embryos derived from heifers fed the pulp-based diets, the relative abundances of the transcripts were not affected by either day of collection or quantity of diet. In embryos derived from heifers fed the barley-based diets, the relative abundances of the Na/K-ATPase transcripts were also not changed by these main effects, while the relative abundances of the Cu/Zn-SOD transcripts were affected by day of collection and by the quantity of diet. Pyruvate metabolism was affected by day of collection, and was significantly increased in day 8 embryos compared with day 7 and day 6 embryos. Diet quantity did not affect pyruvate utilization, whereas diet type did increase pyruvate metabolism in the barley group when compared with the pulp group. The results of this study show for the first time that molecular and metabolic variations may exist in embryos derived in vivo and developed in donor heifers on nutritional regimens differing in type and quantity. Differences in embryos collected on different developmental days may be attributed to varying cell numbers. Alterations in the relative abundances of the Cu/Zn-SOD transcripts and pyruvate metabolism caused by the quantity of diet fed to the donor animal were likely to have been due to alterations in metabolic end products that accumulate in reproductive tract fluids, whereas differences in embryonic metabolism caused by type of diet are related to the composition of the diet. These findings characterize embryos produced in vivo at the molecular level, indicating that the molecular markers used in the present study can differentiate between populations of embryos produced under different nutritional regimens and determine conditions conductive to the production of good quality embryos.


Theriogenology | 2000

Long-term culture and characterization of goat primordial germ cells

B. Kühholzer; A. Baguisi; E.W. Overstrom

While the culture and identification of primordial germ cells (PGCs) in mice is established, only limited investigations on PGCs in livestock have been reported. This study was performed to characterize goat PGCs after culture and cryopreservation. Goat PGCs were isolated from Day 32 fetuses and cultured on a continuous cell line of murine embryonal fibroblasts (STO) as feeder-cells in the presence of leukemia inhibitory factor (LIF). The PGCs proliferated slowly and showed colony formation in early passages. Frozen-thawed PGCs continued to proliferate when stem cell factor (SCF) was added to the culture medium. However, differentiation into epithelial-like polygonal cells or neuronal cells was observed after 1 or 2 passages. The PGCs of 1 female and 1 male cell line were characterized by immunocytochemistry. The PGCs showed positive staining for anti stage-specific embryonic antigen-1 (SSEA-1) and FMA-1 (monoclonal antibody produced against a glycoprotein cell surface antigen of the embryonal carcinoma Nulli SCC1), whereas the reactivity to alkaline phosphatase (AP), an established marker for PGCs in mice, was inconsistent. After differentiation, PGCs lost their positive reaction to SSEA-1, EMA-1 and AP. In conclusion, SSEA-1 and EMA-1 can be used as reliable markers for identifying goat PGCs in addition to morphological criteria. The results indicate that goat PGCs can be kept in long-term culture without losing their morphological characteristics and their positive reaction to SSEA-1 and EMA-1, thus providing a promising source of donor-karyoplasts for nuclear transfer procedures.


Theriogenology | 1993

The effects of once or twice daily injections of pFSH on superovulatory response in heifers

J.H. Walsh; R. Mantovani; R.T. Duby; E.W. Overstrom; J.R. Dobrinsky; W.J. Enright; J.F. Roche; M.P. Boland

Follicle stimulating hormone (FSH) is a glycoprotein hormone with a short half-life and has to be given twice daily for 3-4 days to induce superovulation in heifers. Since such a regimen is time consuming we compared the ovulatory response and yield of embryos in heifers following superovulation with either once or twice daily injections of pFSH for 4 days during the mid-luteal phase of a synchronized estrous cycle or during a prolonged luteal phase in heifers which had been immunized against prostaglandin F2alpha (PG). In Experiment 1, crossbred heifers (n = 42) previously actively immunized against a PG immunogen were superovulated in a 2 (cyclic or persistent corpus luteum) x 2 (once or twice daily injection) factorial plan. The heifers were superovulated with 75 units pFSH, which was injected subcutaneously once (22.5, 22.5, 15 and 15 units per day) or twice daily (9.3 units per injection) for 4 days. In Experiment 2, cyclic crossbred beef heifers (n = 80) were superovulated using pFSH which was given randomly to heifers once daily subcutaneously (T1) or twice daily intramuscularly (T2) using the same daily dose of 9, 7, 5, and 3 mg per day. Estrus was induced in all heifers in both experiments using 500 mug and 250 mug Cloprostenol 12 hours apart on the third day of pFSH injections. All heifers were inseminated twice with frozen-thawed semen at 12 and 24 hours after the onset of standing estrus or at 56 and 72 hours after the first PG if estrus was not observed. Embryos were recovered at slaughter and graded on a scale of 1 to 5 (1 = excellent, 5 = degenerated). Data were recorded for the number of corpora lutea (CL), large (>/=10 mm) and medium (5-9 mm) follicles, number of embryos recovered and embryo morphology. Data were analyzed by least squares analysis of variance procedures. In Experiment 1, there was no difference in ovulation rate between main effects. Fewer embryos were recovered from heifers with a persistent corpus luteum (pCL) and injected once daily (1.71+/-.75 vs 5.75+/-1.27) than from any other group. Heifers with pCL yielded lower (P < 0.05) numbers of freezable embryos than cyclic animals, regardless of injection regimen. In Experiment 2, T2 heifers had a significantly higher number of CL (16.4+/-1.7 vs 7.7+/-1.7; P = 0.0003), large follicles (4.1+/-0.5 vs 2.8+/-0.5; P = 0.04), medium follicles (6.4+/-0.7 vs 4.4+/-0.7; P = 0.04), embryos recovered (9.6+/-1.1 vs 4.9+/-1.1; P = 0.0025) and freezable embryos (4.7+/-0.7 vs 2.1+/-0.7; P = 0.014) than T1 heifers. It is concluded that a single daily subcutaneous injection of pFSH results in a lower superovulatory response than the twice daily regimen in heifers.


Animal Biotechnology | 1990

Porcine growth hormone gene expression from viral promoters in transgenic swine.

Karl M. Ebert; T.E. Smith; F.C. Buonomo; E.W. Overstrom; M.J. Low

Abstract The production of porcine growth hormone (pGH) from novel expression vectors containing the promoter/enhancer elements of the Moloney murine leukemia virus (MLV) LTR or the human cytomegalovirus (CMV) immediate early gene was examined in transgenic swine. Both fusion genes resulted in elevated levels of serum pGH, elevation of insulin‐like growth factor 1 (IGF‐1), and a pronounced decrease in carcass fat deposition. The two viral promoter/enhancer elements were constitutively active in the transgenic swine throughout the life of the animals. In individual swine, the CMV‐pGH transgene was expressed predominantly in the pancreas while the MLV‐pGH transgene was expressed in a wide variety of tissues. These swine were infertile, had insulin resistance, and demonstrated an accelerated form of osteochondritis dissicans. Our results show that excess pGH produces a phenotype identical to that seen in swine expressing heterologous growth hormones, and provides a baseline for assessing the overall efficien...


Archive | 1987

In Vitro Assessment of Blastocyst Differentiation

E.W. Overstrom

It is generally agreed that one of the most critical periods of embryonic development in mammals occurs during the first weeks of gestation. During this early window of development, which is characterized by embryo cleavage, blastulation and gastrulation events, up to 60 percent of pregnancies fail, either totally (uniparous animals) or in part (multiparous animals), depending on species. Hammond (1914) first reported that a significant proportion of pig and rabbit embryos die during early intrauterine development. It was suggested that embryonic death reflected nature’s evolutionary selection process by favoring those embryos which possessed a more competent genetic character. More recently Biggers (1983), in re-evaluating earlier data of Hertig et al. (1959) concerning embryonic mortality in humans, concluded that the intrauterine mortality rate is highest (42–55%) during the period of preimplantation development. Similarly, on average, greater than 33% of fertilized pig embryos do not survive the first 3 weeks of gestation (Day et al., 1959; Perry and Rowlands, 1962; Hafez, 1974; Hafez et al., 1965; Anderson, 1978). Since the incidence of fertilization is high in most mammals (90 to 100%), it is generally agreed that a significant percentage of pregnancy loss is due to early embryonic death. Thus, while our overall understanding of the mechanisms that regulate embryogenesis has increased markedly over the years, the direct relationship between specific cellular processes and embryo mortality/ survivability rates in vivo have not, as yet, been clearly delineated.

Collaboration


Dive into the E.W. Overstrom's collaboration.

Top Co-Authors

Avatar

M.P. Boland

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

R.T. Duby

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

J.F. Roche

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J.R. Dobrinsky

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. O'Callaghan

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

J.H. Walsh

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge