Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Walter Helbling is active.

Publication


Featured researches published by E. Walter Helbling.


Journal of Experimental Marine Biology and Ecology | 1996

Photoacclimation of antarctic marine diatoms to solar ultraviolet radiation

E. Walter Helbling; Bruce Chalker; Walter C. Dunlap; Osmund Holm-Hansen; Virginia E. Villafañe

Abstract The present study was carried out at Palmer Station (64.7 ° S, 64.1 ° W), Antarctica, during the austral spring-summer of the years 1993 and 1994. Two centric diatom species ( Thalassiosira sp. and Corethron criophilum Castracane) and two pennate species ( Pseudonitzschia sp. and Fragilariopsis cylindrus (Grunow) Krieger) were isolated from natural phytoplankton assemblages and exposed to solar radiation to study long term (more than 1 week) photoacclimation to ultraviolet radiation (UVR). At the beginning of the experiments, three of the cultures had relatively low concentrations of UV-absorbing compounds (i.e., mycosporine-like amino acids) and photosynthetic rates were significantly inhibited by UVR. At the end of the experiments (8–12 days), however, the two centric diatom species had high contents of mycosporine-like amino acids (MAAs) and did not show any significant differences in photosynthetic rates when exposed to either UVR + PAR or just to PAR. The synthesis of MAAs was slightly less when samples were exposed only to PAR than when exposed to UVR in addition to PAR. The rates of synthesis of MAAs, relative to phytoplankton carbon, for the two centric diatoms were 0.001 and 0.008 μg MAAs · (μg C) −1 · day −1 for shinorine and porphyra-334, respectively. The concentrations of MAAs in Pseudonitzschia sp., and Fragilariopsis cylindrus at the end of the experiments were much lower (less than one tenth) than that in the centric diatoms and the cultures were still inhibited by UVR. In the pennate diatoms MAAs increased in concentration as a response only to UVR and not to PAR. The loss rates of MAAs in Thalassiosira sp. after transferring the culture from high (1200 μE · m −2 · s −1 ) to low irradiance (250 μE · m −2 · s −1 ) were 0.0002 and 0.0023 μg MAAs · (μg C) −1 · day −1 for shinorine and porphyra-334, respectively. These results provide further evidence that MAA compounds are synthesized in response to high light conditions and that they do decrease the photoinhibitory effects of UVR.


Plant Physiology | 2007

Solar UV Radiation Drives CO2 Fixation in Marine Phytoplankton: A Double-Edged Sword

Kunshan Gao; Yaping Wu; Gang Li; Hongyan Wu; Virginia E. Villafañe; E. Walter Helbling

Photosynthesis by phytoplankton cells in aquatic environments contributes to more than 40% of the global primary production (Behrenfeld et al., 2006). Within the euphotic zone (down to 1% of surface photosynthetically active radiation [PAR]), cells are exposed not only to PAR (400-700 nm) but also to UV radiation (UVR; 280-400 nm) that can penetrate to considerable depths (Hargreaves, 2003). In contrast to PAR, which is energizing to photosynthesis, UVR is usually regarded as a stressor (Hader, 2003) and suggested to affect CO2-concentrating mechanisms in phytoplankton (Beardall et al., 2002). Solar UVR is known to reduce photosynthetic rates (Steemann Nielsen, 1964; Helbling et al., 2003), and damage cellular components such as D1 proteins (Sass et al., 1997) and DNA molecules (Buma et al., 2003). It can also decrease the growth (Villafane et al., 2003) and alter the rate of nutrient uptake (Fauchot et al., 2000) and the fatty acid composition (Goes et al., 1994) of phytoplankton. Recently, it has been found that natural levels of UVR can alter the morphology of the cyanobacterium Arthrospira (Spirulina) platensis (Wu et al., 2005b). On the other hand, positive effects of UVR, especially of UV- A (315-400 nm), have also been reported. UV- A enhances carbon fixation of phytoplankton under reduced (Nilawati et al., 1997; Barbieri et al., 2002) or fast-fluctuating (Helbling et al., 2003) solar irradiance and allows photorepair of UV- B-induced DNA damage (Buma et al., 2003). Furthermore, the presence of UV-A resulted in higher biomass production of A. platensis as compared to that under PAR alone (Wu et al., 2005a). Energy of UVR absorbed by the diatom Pseudo-nitzschia multiseries was found to cause fluorescence (Orellana et al., 2004). In addition, fluorescent pigments in corals and their algal symbiont are known to absorb UVR and play positive roles for the symbiotic photosynthesis and photoprotection (Schlichter et al., 1986; Salih et al., 2000). However, despite the positive effects that solar UVR may have on aquatic photosynthetic organisms, there is no direct evidence to what extent and howUVR per se is utilized by phytoplankton. In addition, estimations of aquatic biological production have been carried out in incubations considering only PAR (i. e. using UV-opaque vials made of glass or polycarbonate; Donk et al., 2001) without UVR being considered (Hein and Sand-Jensen, 1997; Schippers and Lurling, 2004). Here, we have found that UVR can act as an additional source of energy for photosynthesis in tropical marine phytoplankton, though it occasionally causes photoinhibition at high PAR levels. While UVR is usually thought of as damaging, our results indicate that UVR can enhance primary production of phytoplankton. Therefore, oceanic carbon fixation estimates may be underestimated by a large percentage if UVR is not taken into account.


Archive | 1993

Ultraviolet Radiation and Its Effects on Organisms in Aquatic Environments

Osmund Holm-Hansen; Dan Lubin; E. Walter Helbling

The problem of trying to determine the effect of solar ultraviolet radiation (UVR) on aquatic organisms is much more difficult than that of assessing the impact of UVR on terrestrial plants. The major reasons for this are that spectral irradiance changes dramatically with depth in the water column and that most aquatic organisms will be moving up and down in the upper water column, either through active motility processes or by physical mixing processes. It is thus not possible to determine the effect of UVR on planktonic organisms with any degree of certainty; the best one can do is to determine the effects under a wide variety of experimental techniques, and to estimate the potential damage to organisms when they are under completely natural conditions.


Photochemistry and Photobiology | 1993

ULTRAVIOLET RADIATION IN ANTARCTICA: INHIBITION OF PRIMARY PRODUCTION

Osmund Holm-Hansen; E. Walter Helbling; Dan Lubin

With the seasonal formation of the ozone hole over Antarctica, there is much concern regarding the effects of increased solar UV‐B radiation (280–320 nm) on the marine ecosystem in the Southern Ocean. In situ incubations of natural phytoplankton assemblages in antarctic waters indicate that under normal ozone conditions UV‐B radiation is responsible for a loss of approximately 4.9% of primary production in the euphotic zone, whereas UV radiation with wavelengths between 320 and 360 nm causes a loss of approximately 6.2%. When combined with data on the action spectrum for photoinhibition by UV radiation, our data suggest that the enhanced fluence of UV‐B radiation under a well‐developed ozone hole (150 Dobson units) would decrease daily primary productivity by an additional amount of 3.8%. Calculations that take into consideration the extent and duration of low stratospheric ozone concentrations during September to November indicate that the decrease in total annual primary production in antarctic waters due to enhanced UV‐B radiation would be 0.20%.


Journal of Phycology | 2004

AMMONIUM AND UV RADIATION STIMULATE THE ACCUMULATION OF MYCOSPORINE-LIKE AMINO ACIDS IN PORPHYRA COLUMBINA (RHODOPHYTA) FROM PATAGONIA, ARGENTINA1

Nathalie Korbee Peinado; Roberto T. Abdala Díaz; Félix L. Figueroa; E. Walter Helbling

The combined effects of ammonium concentration and UV radiation on the red alga Porphyra columbina (Montagne) from the Patagonian coast (Chubut, Argentina) was determined using short‐term (less than a week) experimentation. Discs of P. columbina were incubated with three ammonium concentrations (0, 50, and 300 μM NH4Cl) in anilluminated chamber (PAR=300 μmol photons·m−2·s−1, UVA=15 W·m−2, UVB=0.7 W·m−2) at 15°C. Algae incubated at 300 μM ammonium showed a significant increase (P<0.05) in the concentration of mycosporine‐like amino acids (MAAs) compared with the initial value or with the other ammonium treatments. The increase of MAAs was, however, a function of the quality of irradiance received, with a higher increase in samples exposed to UVA compared with UVB (29% and 5% increase, respectively). However, UVB radiation was more effective in inducing MAA synthesis per unit energy received by the algae. Samples exposed to PAR only had an intermediate increase in MAA concentration of 16%. Chl a concentration decreased through the incubation with the greatest decrease at high ammonium concentration. Phycobiliprotein (BP) decreased through time with the smallest decrease occurring at high ammonium concentration. Photoinhibition (as a decrease of optimal quantum yield) was significantly greater under nitrogen‐deprived conditions than that under replete ammonium levels. Maximal gross photosynthesis (GPmax), as oxygen evolution, and maximal electron transport rate (ETRmax), as chl fluorescence, increased with the ammonium concentration. Positive relationships between maximal GP or ETR and pigment ratios (BP/chl a and MAAs/chl a) and negative relationships with chl a concentration were found.


Applied and Environmental Microbiology | 2005

Effects of solar UV radiation on morphology and photosynthesis of filamentous cyanobacterium Arthrospira platensis.

Hongyan Wu; Kunshan Gao; Virginia E. Villafañe; Teruo Watanabe; E. Walter Helbling

ABSTRACT To study the impact of solar UV radiation (UVR) (280 to 400 nm) on the filamentous cyanobacterium Arthrospira (Spirulina) platensis, we examined the morphological changes and photosynthetic performance using an indoor-grown strain (which had not been exposed to sunlight for decades) and an outdoor-grown strain (which had been grown under sunlight for decades) while they were cultured with three solar radiation treatments: PAB (photosynthetically active radiation [PAR] plus UVR; 280 to 700 nm), PA (PAR plus UV-A; 320 to 700 nm), and P (PAR only; 400 to 700 nm). Solar UVR broke the spiral filaments of A. platensis exposed to full solar radiation in short-term low-cell-density cultures. This breakage was observed after 2 h for the indoor strain but after 4 to 6 h for the outdoor strain. Filament breakage also occurred in the cultures exposed to PAR alone; however, the extent of breakage was less than that observed for filaments exposed to full solar radiation. The spiral filaments broke and compressed when high-cell-density cultures were exposed to full solar radiation during long-term experiments. When UV-B was screened off, the filaments initially broke, but they elongated and became loosely arranged later (i.e., there were fewer spirals per unit of filament length). When UVR was filtered out, the spiral structure hardly broke or became looser. Photosynthetic O2 evolution in the presence of UVR was significantly suppressed in the indoor strain compared to the outdoor strain. UVR-induced inhibition increased with exposure time, and it was significantly lower in the outdoor strain. The concentration of UV-absorbing compounds was low in both strains, and there was no significant change in the amount regardless of the radiation treatment, suggesting that these compounds were not effectively used as protection against solar UVR. Self-shading, on the other hand, produced by compression of the spirals over adaptive time scales, seems to play an important role in protecting this species against deleterious UVR. Our findings suggest that the increase in UV-B irradiance due to ozone depletion not only might affect photosynthesis but also might alter the morphological development of filamentous cyanobacteria during acclimation or over adaptive time scales.


Global and Planetary Change | 1997

Latitudinal UVR-PAR measurements in Argentina: extent of the ‘ozone hole’☆

V.Luis Orce; E. Walter Helbling

Abstract The UVR-PAR Argentinean Monitoring Network started its operation in September 1994 recording ultraviolet (UVR) and Photosynthetic Available Radiation (PAR) at a frequency of once per minute, at four sites, throughout the entire year. Four spectroradiometers (GUV-511, Biospherical Instruments, Inc.) were installed at research centers separated by about 8–12 degrees of latitude, extending from the Subantarctic-Fueguian region to the Tropic of Capricorn. The instruments are located in populated areas ranging from 30,000 to 11 million people and with extremely different climate regimes and conditions of tropospheric pollution. Our ground-based data indicated that the irradiance increased steadily from south to north. This increase was also observed in the calculated daily doses of UV-B (280–320 nm); however, daily integrated values for UV-A (320–400 nm) and PAR (400–700 nm) were higher at mid-latitudes (Puerto Madryn, 42°47′S). A similar south-to-north increase was evident in the ratio of the energy at 305 nm and 340 nm wavelengths (with low 305/340 ratios indicating high total ozone column concentration), with low values at Ushuaia (55°01′S) and high values at Jujuy (24°10′S). However, the 305/340 ratios increased significantly over their normal spring values at two sites, Ushuaia and Puerto Madryn, for variable time periods during October-December. Our data suggest that the ozone hole was over South America extending to about 38°S for at least a week during October and about two weeks during November-December of the years of 1994 and 1995. However, it should be noted that the erythemal irradiance, in the area influenced by the ozone hole, was at all times lower than that in Buenos Aires and well below the value at Jujuy (tropical station). This study also indicates that when assessing the impact of solar UVR upon organisms, other variables such as cloud cover, solar zenith angle, day length, latitude, and atmospheric pollution should be considered in addition to total ozone column concentration.


Journal of Phycology | 2008

Combined effects of ultraviolet radiation and temperature on morphology, photosynthesis, and DNA of Arthrospira (Spirulina) platensis (Cyanophyta)

Kunshan Gao; Ping Li; Teruo Watanabe; E. Walter Helbling

Natural levels of solar UVR were shown to break and alter the spiral structure of Arthrospira (Spirulina) platensis (Nordst.) Gomont during winter. However, this phenomenon was not observed during summer at temperatures of ∼30°C. Since little has been documented on the interactive effects of solar UV radiation (UVR; 280–400 nm) and temperature on cyanobacteria, the morphology, photosynthesis, and DNA damage of A. platensis were examined using two radiation treatments (PAR [400–700 nm] and PAB [PAR + UV‐A + UV‐B: 280–700]), three temperatures (15, 22, and 30°C), and three biomass concentrations (100, 160, and 240 mg dwt [dry weight] · L−1). UVR caused a breakage of the spiral structure at 15°C and 22°C, but not at 30°C. High PAR levels also induced a significant breakage at 15°C and 22°C, but only at low biomass densities, and to lesser extent when compared with the PAB treatment. A. platensis was able to alter its spiral structure by increasing helix tightness at the highest temperature tested. The photochemical efficiency was depressed to undetectable levels at 15°C but was relatively high at 30°C even under the treatment with UVR in 8 h. At 30°C, UVR led to 93%–97% less DNA damage when compared with 15°C after 8 h of exposure. UV‐absorbing compounds were determined as negligible at all light and temperature combinations. The possible mechanisms for the temperature‐dependent effects of UVR on this organism are discussed in this paper.


Journal of Photochemistry and Photobiology B-biology | 2001

Patterns of DNA damage and photoinhibition in temperate South-Atlantic picophytoplankton exposed to solar ultraviolet radiation

Anita Buma; E. Walter Helbling; M. Karin de Boer; Virginia E. Villafañe

Natural marine phytoplankton assemblages from Bahía Bustamante (Chubut, Argentina, 45 degrees S, 66.5 degrees W), mainly consisting of cells in the picoplankton size range (0.2-2 microm), were exposed to various UVBR (280-315 nm) and UVAR (315-400 nm) regimes in order to follow wavelength-dependent patterns of cyclobutane pyrimidine dimer (CPD) induction and repair. Simultaneously, UVR induced photosynthetic inhibition was studied in radiocarbon incorporation experiments. Biological weighting functions (BWFs) for photoinhibition and for CPD induction, the latter measured in bare calf thymus DNA, differed in the UVAR region: carbon incorporation was reduced markedly due to UVAR, whereas no measurable UVAR effect was found on CPD formation. In contrast, BWFs for inhibition of photosynthesis and CPD accumulation were fairly similar in the UVBR region, especially above 300 nm. Incubation of phytoplankton under full solar radiation caused rapid CPD accumulation over the day, giving maximum damage levels exceeding 500 CPD MB(-1) at the end of the afternoon. A clear daily pattern of CPD accumulation was found, in keeping with the DNA effective dose measured by a DNA dosimeter. In contrast, UVBR induced photosynthetic inhibition was not dose related and remained nearly constant during the day. Screening of UVBR or UVR did not cause significant CPD removal, indicating that photoreactivation either by PAR or UVAR was of minor importance in these organisms. High CPD levels were found in situ early in the morning, which remained unaffected notwithstanding treatments favoring photorepair. These results imply that a proportion of cells had been killed by UVBR exposure prior to the treatments. Our data suggest that the limited potential for photoreactivation in picophytoplankton assemblages from the southern Atlantic Ocean causes high CPD accumulation as a result of UVBR exposure.


Photochemistry and Photobiology | 2005

Impact of Solar Ultraviolet Radiation on Marine Phytoplankton of Patagonia, Argentina¶

E. Walter Helbling; Elena S. Barbieri; M. Alejandra Marcoval; Rodrigo J. Gonçalves; Virginia E. Villafañe

Patagonia area is located in close proximity to the Antarctic ozone “hole” and thus receives enhanced ultraviolet B (UV‐B) radiation (280–315 nm) in addition to the normal levels of ultraviolet A (UV‐A; 315–400 nm) and photosynthetically available radiation (PAR; 400‐700 nm). In marine ecosystems of Patagonia, normal ultraviolet radiation (UVR) levels affect phytoplankton assemblages during the three phases of the annual succession: (1) prebloom season (late summer‐fall), (2) bloom season (winter‐early spring) and (3) postbloom season (late spring‐summer). Small‐size cells characterize the pre‐and postbloom communities, which have a relatively high photosynthetic inhibition because of high UVR levels during those seasons. During the bloom, characterized by micro‐plankton diatoms, photosynthetic inhibition is low because of the low UVR levels reaching the earths surface during winter; this community, however, is more sensitive to UV‐B when inhibition is normalized by irradiance (i.e. biological weighting functions). In situ studies have shown that UVR significantly affects not only photosynthesis but also the DNA molecule, but these negative effects are rapidly reduced in the water column because of the differential attenuation of solar radiation. UVR also affects photosynthesis versus irradiance (P vs E) parameters of some natural phytoplankton assemblages (i.e. during the pre‐ but not during the postbloom season). However, there is a significant temporal variability of P vs E parameters, which are influenced by the nutrient status of cells and taxonomic composition; taxonomic composition is in turn associated with the stratification conditions (e.g. wind speed and duration). In Patagonia, wind speed is one of the most important variables that conditions the development of the winter bloom by regulating the depth of the upper mixed layer (UML) and hence the mean irradiance received by cells. Studies on the interactive effects of UVR and mixing show that responses of phytoplankton vary according to the taxonomic composition and cell structure of assemblages; therefore cells use UVR if >90% of the euphotic zone is being mixed. In fact, cell size plays a very important role when estimating the impact of UVR on phytoplankton, with large cells being more sensitive when determining photosynthesis inhibition, whereas small cells are more sensitive to DNA damage. Finally, in long‐term experiments, it was determined that UVR can shape the diatom community structure in some assemblages of coastal waters, but it is virtually unknown how these changes affect the trophody‐namics of marine systems. Future studies should consider the combined effects of UVR on both phytoplankton and grazers to establish potential changes in biodiversity of the area.

Collaboration


Dive into the E. Walter Helbling's collaboration.

Top Co-Authors

Avatar

Virginia E. Villafañe

Estación de Fotobiología Playa Unión

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donat-P. Häder

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Horacio Zagarese

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anita Buma

University of Groningen

View shared research outputs
Top Co-Authors

Avatar

Elena S. Barbieri

Estación de Fotobiología Playa Unión

View shared research outputs
Top Co-Authors

Avatar

Macarena S. Valiñas

Estación de Fotobiología Playa Unión

View shared research outputs
Top Co-Authors

Avatar

Rodrigo J. Gonçalves

Estación de Fotobiología Playa Unión

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge