Eadaoin Harney
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eadaoin Harney.
Nature | 2015
Wolfgang Haak; Iosif Lazaridis; Nick Patterson; Nadin Rohland; Swapan Mallick; Bastien Llamas; Guido Brandt; Eadaoin Harney; Kristin Stewardson; Qiaomei Fu; Alissa Mittnik; Eszter Bánffy; Christos Economou; Michael Francken; Susanne Friederich; Rafael Garrido Pena; Fredrik Hallgren; Valery Khartanovich; Aleksandr Khokhlov; Michael Kunst; Pavel Kuznetsov; Harald Meller; Oleg Mochalov; Vayacheslav Moiseyev; Nicole Nicklisch; Sandra Pichler; Roberto Risch; Manuel Ángel Rojo Guerra; Christina Roth; Anna Szécsényi-Nagy
We generated genome-wide data from 69 Europeans who lived between 8,000–3,000 years ago by enriching ancient DNA libraries for a target set of almost 400,000 polymorphisms. Enrichment of these positions decreases the sequencing required for genome-wide ancient DNA analysis by a median of around 250-fold, allowing us to study an order of magnitude more individuals than previous studies and to obtain new insights about the past. We show that the populations of Western and Far Eastern Europe followed opposite trajectories between 8,000–5,000 years ago. At the beginning of the Neolithic period in Europe, ∼8,000–7,000 years ago, closely related groups of early farmers appeared in Germany, Hungary and Spain, different from indigenous hunter-gatherers, whereas Russia was inhabited by a distinctive population of hunter-gatherers with high affinity to a ∼24,000-year-old Siberian. By ∼6,000–5,000 years ago, farmers throughout much of Europe had more hunter-gatherer ancestry than their predecessors, but in Russia, the Yamnaya steppe herders of this time were descended not only from the preceding eastern European hunter-gatherers, but also from a population of Near Eastern ancestry. Western and Eastern Europe came into contact ∼4,500 years ago, as the Late Neolithic Corded Ware people from Germany traced ∼75% of their ancestry to the Yamnaya, documenting a massive migration into the heartland of Europe from its eastern periphery. This steppe ancestry persisted in all sampled central Europeans until at least ∼3,000 years ago, and is ubiquitous in present-day Europeans. These results provide support for a steppe origin of at least some of the Indo-European languages of Europe.
Nature | 2015
Iain Mathieson; Iosif Lazaridis; Nadin Rohland; Swapan Mallick; Nick Patterson; Songül Alpaslan Roodenberg; Eadaoin Harney; Kristin Stewardson; Daniel Fernandes; Mario Novak; Kendra Sirak; Cristina Gamba; Eppie R. Jones; Bastien Llamas; Stanislav Dryomov; Joseph K. Pickrell; Juan Luis Arsuaga; José María Bermúdez de Castro; Eudald Carbonell; F.A. Gerritsen; Aleksandr Khokhlov; Pavel Kuznetsov; Marina Lozano; Harald Meller; Oleg Mochalov; Vayacheslav Moiseyev; Manuel Ángel Rojo Guerra; Jacob Roodenberg; Josep Maria Vergès; Johannes Krause
Ancient DNA makes it possible to observe natural selection directly by analysing samples from populations before, during and after adaptation events. Here we report a genome-wide scan for selection using ancient DNA, capitalizing on the largest ancient DNA data set yet assembled: 230 West Eurasians who lived between 6500 and 300 bc, including 163 with newly reported data. The new samples include, to our knowledge, the first genome-wide ancient DNA from Anatolian Neolithic farmers, whose genetic material we obtained by extracting from petrous bones, and who we show were members of the population that was the source of Europe’s first farmers. We also report a transect of the steppe region in Samara between 5600 and 300 bc, which allows us to identify admixture into the steppe from at least two external sources. We detect selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.
Nature | 2016
Iosif Lazaridis; Dani Nadel; Gary O. Rollefson; Deborah C. Merrett; Nadin Rohland; Swapan Mallick; Daniel Fernandes; Mario Novak; Beatriz Gamarra; Kendra Sirak; Sarah Connell; Kristin Stewardson; Eadaoin Harney; Qiaomei Fu; Gloria Gonzalez-Fortes; Eppie R. Jones; Songül Alpaslan Roodenberg; György Lengyel; Fanny Bocquentin; Boris Gasparian; Janet Monge; Michael C. Gregg; Vered Eshed; Ahuva-Sivan Mizrahi; Christopher Meiklejohn; F.A. Gerritsen; Luminita Bejenaru; Matthias Blüher; Archie Campbell; Gianpiero L. Cavalleri
We report genome-wide ancient DNA from 44 ancient Near Easterners ranging in time between ~12,000 and 1,400 bc, from Natufian hunter–gatherers to Bronze Age farmers. We show that the earliest populations of the Near East derived around half their ancestry from a ‘Basal Eurasian’ lineage that had little if any Neanderthal admixture and that separated from other non-African lineages before their separation from each other. The first farmers of the southern Levant (Israel and Jordan) and Zagros Mountains (Iran) were strongly genetically differentiated, and each descended from local hunter–gatherers. By the time of the Bronze Age, these two populations and Anatolian-related farmers had mixed with each other and with the hunter–gatherers of Europe to greatly reduce genetic differentiation. The impact of the Near Eastern farmers extended beyond the Near East: farmers related to those of Anatolia spread westward into Europe; farmers related to those of the Levant spread southward into East Africa; farmers related to those of Iran spread northward into the Eurasian steppe; and people related to both the early farmers of Iran and to the pastoralists of the Eurasian steppe spread eastward into South Asia.
Philosophical Transactions of the Royal Society B | 2014
Nadin Rohland; Eadaoin Harney; Swapan Mallick; David Reich
The challenge of sequencing ancient DNA has led to the development of specialized laboratory protocols that have focused on reducing contamination and maximizing the number of molecules that are extracted from ancient remains. Despite the fact that success in ancient DNA studies is typically obtained by screening many samples to identify a promising subset, ancient DNA protocols have not, in general, focused on reducing the time required to screen samples. We present an adaptation of a popular ancient library preparation method that makes screening more efficient. First, the DNA extract is treated using a protocol that causes characteristic ancient DNA damage to be restricted to the terminal nucleotides, while nearly eliminating it in the interior of the DNA molecules, allowing a single library to be used both to test for ancient DNA authenticity and to carry out population genetic analysis. Second, the DNA molecules are ligated to a unique pair of barcodes, which eliminates undetected cross-contamination from this step onwards. Third, the barcoded library molecules include incomplete adapters of short length that can increase the specificity of hybridization-based genomic target enrichment. The adapters are completed just before sequencing, so the same DNA library can be used in multiple experiments, and the sequences distinguished. We demonstrate this protocol on 60 ancient human samples.
Nature | 2016
Pontus Skoglund; Cosimo Posth; Kendra Sirak; Matthew Spriggs; Frédérique Valentin; Stuart Bedford; Geoffrey Clark; Christian Reepmeyer; Fiona Petchey; Daniel Fernandes; Qiaomei Fu; Eadaoin Harney; Mark Lipson; Swapan Mallick; Mario Novak; Nadine Rohland; Kristin Stewardson; Syafiq Abdullah; Murray P. Cox; Françoise R. Friedlaender; Jonathan S. Friedlaender; Toomas Kivisild; George Koki; Pradiptajati Kusuma; D. Andrew Merriwether; F. X. Ricaut; Joseph Wee; Nick Patterson; Johannes Krause; Ron Pinhasi
The appearance of people associated with the Lapita culture in the South Pacific around 3,000 years ago marked the beginning of the last major human dispersal to unpopulated lands. However, the relationship of these pioneers to the long-established Papuan people of the New Guinea region is unclear. Here we present genome-wide ancient DNA data from three individuals from Vanuatu (about 3,100–2,700 years before present) and one from Tonga (about 2,700–2,300 years before present), and analyse them with data from 778 present-day East Asians and Oceanians. Today, indigenous people of the South Pacific harbour a mixture of ancestry from Papuans and a population of East Asian origin that no longer exists in unmixed form, but is a match to the ancient individuals. Most analyses have interpreted the minimum of twenty-five per cent Papuan ancestry in the region today as evidence that the first humans to reach Remote Oceania, including Polynesia, were derived from population mixtures near New Guinea, before their further expansion into Remote Oceania. However, our finding that the ancient individuals had little to no Papuan ancestry implies that later human population movements spread Papuan ancestry through the South Pacific after the first peopling of the islands.
Nature | 2017
Mark Lipson; Anna Szécsényi-Nagy; Swapan Mallick; Annamária Pósa; Balázs Stégmár; Victoria Keerl; Nadin Rohland; Kristin Stewardson; Matthew Ferry; Megan Michel; Jonas Oppenheimer; Nasreen Broomandkhoshbacht; Eadaoin Harney; Bastien Llamas; Balázs Gusztáv Mende; Kitti Köhler; Krisztián Oross; Mária Bondár; Tibor Marton; Anett Osztás; János Jakucs; Tibor Paluch; Ferenc Horváth; Piroska Csengeri; Judit Koós; Katalin Sebők; Alexandra Anders; Pál Raczky; Judit Regenye; Judit P. Barna
Ancient DNA studies have established that Neolithic European populations were descended from Anatolian migrants who received a limited amount of admixture from resident hunter-gatherers. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Here we investigate the population dynamics of Neolithization across Europe using a high-resolution genome-wide ancient DNA dataset with a total of 180 samples, of which 130 are newly reported here, from the Neolithic and Chalcolithic periods of Hungary (6000–2900 bc, n = 100), Germany (5500–3000 bc, n = 42) and Spain (5500–2200 bc, n = 38). We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways in which gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modelling approaches to elucidate multiple dimensions of historical population interactions.
bioRxiv | 2015
Iain Mathieson; Iosif Lazaridis; Nadin Rohland; Swapan Mallick; Nick Patterson; Songül Alpaslan Roodenberg; Eadaoin Harney; Kristin Stewardson; Daniel Fernandes; Mario Novak; Kendra Sirak; Cristina Gamba; Eppie R. Jones; Bastien Llamas; Stanislav Dryomov; Joseph K. Pickrell; Juan Luis Arsuaga; José María Bermúdez de Castro; Eudald Carbonell; F.A. Gerritsen; Aleksandr Khokhlov; Pavel Kuznetsov; Marina Lozano; Harald Meller; Oleg Mochalov; Vayacheslav Moiseyev; Manuel Ángel Rojo Guerra; Jacob Roodenberg; Josep Maria Vergès; Johannes Krause
The arrival of farming in Europe around 8,500 years ago necessitated adaptation to new environments, pathogens, diets, and social organizations. While indirect evidence of adaptation can be detected in patterns of genetic variation in present-day people, ancient DNA makes it possible to witness selection directly by analyzing samples from populations before, during and after adaptation events. Here we report the first genome-wide scan for selection using ancient DNA, capitalizing on the largest genome-wide dataset yet assembled: 230 West Eurasians dating to between 6500 and 1000 BCE, including 163 with newly reported data. The new samples include the first genome-wide data from the Anatolian Neolithic culture, who we show were members of the population that was the source of Europe’s first farmers, and whose genetic material we extracted by focusing on the DNA-rich petrous bone. We identify genome-wide significant signatures of selection at loci associated with diet, pigmentation and immunity, and two independent episodes of selection on height.
European Journal of Human Genetics | 2016
Alexander Mörseburg; Luca Pagani; François-Xavier Ricaut; Bryndis Yngvadottir; Eadaoin Harney; Cristina Castillo; Tom Hoogervorst; Tiago Antao; Pradiptajati Kusuma; Nicolas Brucato; Alexia Cardona; Denis Pierron; Thierry Letellier; Joseph Wee; Syafiq Abdullah; Mait Metspalu; Toomas Kivisild
The history of human settlement in Southeast Asia has been complex and involved several distinct dispersal events. Here, we report the analyses of 1825 individuals from Southeast Asia including new genome-wide genotype data for 146 individuals from three Mainland Southeast Asian (Burmese, Malay and Vietnamese) and four Island Southeast Asian (Dusun, Filipino, Kankanaey and Murut) populations. While confirming the presence of previously recognised major ancestry components in the Southeast Asian population structure, we highlight the Kankanaey Igorots from the highlands of the Philippine Mountain Province as likely the closest living representatives of the source population that may have given rise to the Austronesian expansion. This conclusion rests on independent evidence from various analyses of autosomal data and uniparental markers. Given the extensive presence of trade goods, cultural and linguistic evidence of Indian influence in Southeast Asia starting from 2.5 kya, we also detect traces of a South Asian signature in different populations in the region dating to the last couple of thousand years.
Science | 2018
Mark Lipson; Olivia Cheronet; Swapan Mallick; Nadin Rohland; Marc Oxenham; Michael Pietrusewsky; Thomas Oliver Pryce; Anna Willis; Hirofumi Matsumura; Hallie R. Buckley; Kate Domett; Giang Hai Nguyen; Hoang Hiep Trinh; Aung Aung Kyaw; Tin Tin Win; Baptiste Pradier; Nasreen Broomandkhoshbacht; Francesca Candilio; Piya Changmai; Daniel Fernandes; Matthew Ferry; Beatriz Gamarra; Eadaoin Harney; Jatupol Kampuansai; Wibhu Kutanan; Megan Michel; Mario Novak; Jonas Oppenheimer; Kendra Sirak; Kristin Stewardson
Ancient migrations in Southeast Asia The past movements and peopling of Southeast Asia have been poorly represented in ancient DNA studies (see the Perspective by Bellwood). Lipson et al. generated sequences from people inhabiting Southeast Asia from about 1700 to 4100 years ago. Screening of more than a hundred individuals from five sites yielded ancient DNA from 18 individuals. Comparisons with present-day populations suggest two waves of mixing between resident populations. The first mix was between local hunter-gatherers and incoming farmers associated with the Neolithic spreading from South China. A second event resulted in an additional pulse of genetic material from China to Southeast Asia associated with a Bronze Age migration. McColl et al. sequenced 26 ancient genomes from Southeast Asia and Japan spanning from the late Neolithic to the Iron Age. They found that present-day populations are the result of mixing among four ancient populations, including multiple waves of genetic material from more northern East Asian populations. Science, this issue p. 92, p. 88; see also p. 31 Ancient DNA data shed light on the past 4000 years of Southeast Asian genetic history. Southeast Asia is home to rich human genetic and linguistic diversity, but the details of past population movements in the region are not well known. Here, we report genome-wide ancient DNA data from 18 Southeast Asian individuals spanning from the Neolithic period through the Iron Age (4100 to 1700 years ago). Early farmers from Man Bac in Vietnam exhibit a mixture of East Asian (southern Chinese agriculturalist) and deeply diverged eastern Eurasian (hunter-gatherer) ancestry characteristic of Austroasiatic speakers, with similar ancestry as far south as Indonesia providing evidence for an expansive initial spread of Austroasiatic languages. By the Bronze Age, in a parallel pattern to Europe, sites in Vietnam and Myanmar show close connections to present-day majority groups, reflecting substantial additional influxes of migrants.
bioRxiv | 2017
Mark Lipson; Anna Szécsényi-Nagy; Swapan Mallick; Annamária Pósa; Balázs Stégmár; Victoria Keerl; Nadin Rohland; Kristin Stewardson; Matthew Ferry; Megan Michel; Jonas Oppenheimer; Nasreen Broomandkhoshbacht; Eadaoin Harney; Bastien Llamas; Balázs Gusztáv Mende; Kitti Köhler; Krisztián Oross; Mária Bondár; Tibor Marton; Anett Osztás; János Jakucs; Tibor Paluch; Ferenc Horváth; Piroska Csengeri; Judit Koós; Katalin Sebok; Alexandra Anders; Pál Raczky; Judit Regenye; Judit P. Barna
Ancient DNA studies have established that European Neolithic populations were descended from Anatolian migrants who received a limited amount of admixture from resident hunter-gatherers. Many open questions remain, however, about the spatial and temporal dynamics of population interactions and admixture during the Neolithic period. Using the highest-resolution genomewide ancient DNA data set assembled to date—a total of 177 samples, 127 newly reported here, from the Neolithic and Chalcolithic of Hungary (6000–2900 BCE, n = 98), Germany (5500–3000 BCE, n = 42), and Spain (5500–2200 BCE, n = 37)—we investigate the population dynamics of Neolithization across Europe. We find that genetic diversity was shaped predominantly by local processes, with varied sources and proportions of hunter-gatherer ancestry among the three regions and through time. Admixture between groups with different ancestry profiles was pervasive and resulted in observable population transformation across almost all cultural transitions. Our results shed new light on the ways that gene flow reshaped European populations throughout the Neolithic period and demonstrate the potential of time-series-based sampling and modeling approaches to elucidate multiple dimensions of historical population interactions.