Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eamon P. Mulvaney is active.

Publication


Featured researches published by Eamon P. Mulvaney.


Journal of Biological Chemistry | 2011

Identification of an Interaction between the TPα and TPβ Isoforms of the Human Thromboxane A2 Receptor with Protein Kinase C-related Kinase (PRK) 1 IMPLICATIONS FOR PROSTATE CANCER

Elizebeth C. Turner; David J. Kavanagh; Eamon P. Mulvaney; Caitriona McLean; Katarina Wikström; Helen M. Reid; B. Therese Kinsella

In humans, thromboxane (TX) A2 signals through the TPα and TPβ isoforms of the TXA2 receptor or TP. Here, the RhoA effector protein kinase C-related kinase (PRK) 1 was identified as an interactant of both TPα and ΤPβ involving common and unique sequences within their respective C-terminal (C)-tail domains and the kinase domain of PRK1 (PRK1640–942). Although the interaction with PRK1 is constitutive, agonist activation of TPα/TPβ did not regulate the complex per se but enhanced PRK1 activation leading to phosphorylation of its general substrate histone H1 in vitro. Altered PRK1 and TP expression and signaling are increasingly implicated in certain neoplasms, particularly in androgen-associated prostate carcinomas. Agonist activation of TPα/TPβ led to phosphorylation of histone H3 at Thr11 (H3 Thr11), a previously recognized specific marker of androgen-induced chromatin remodeling, in the prostate LNCaP and PC-3 cell lines but not in primary vascular smooth muscle or endothelial cells. Moreover, this effect was augmented by dihydrotestosterone in androgen-responsive LNCaP but not in nonresponsive PC-3 cells. Furthermore, PRK1 was confirmed to constitutively interact with TPα/TPβ in both LNCaP and PC-3 cells, and targeted disruption of PRK1 impaired TPα/TPβ-mediated H3 Thr11 phosphorylation in, and cell migration of, both prostate cell types. Collectively, considering the role of TXA2 as a potent mediator of RhoA signaling, the identification of PRK1 as a bona fide interactant of TPα/TPβ, and leading to H3 Thr11 phosphorylation to regulate cell migration, has broad functional significance such as within the vasculature and in neoplasms in which both PRK1 and the TPs are increasingly implicated.


Journal of Biological Chemistry | 2010

Interaction of the Human Prostacyclin Receptor with Rab11 CHARACTERIZATION OF A NOVEL Rab11 BINDING DOMAIN WITHIN α-HELIX 8 THAT IS REGULATED BY PALMITOYLATION

Helen M. Reid; Eamon P. Mulvaney; Elizebeth C. Turner; B. Therese Kinsella

The human prostacyclin receptor (hIP) undergoes agonist-induced internalization and subsequent recyclization in slowly recycling endosomes involving its direct physical interaction with Rab11a. Moreover, interaction with Rab11a localizes to a 22-residue putative Rab11 binding domain (RBD) within the carboxyl-terminal tail of the hIP, proximal to the transmembrane 7 (TM7) domain. Because the proposed RBD contains Cys308 and Cys311, in addition to Cys309, that are known to undergo palmitoylation, we sought to identify the structure/function determinants of the RBD, including the influence of palmitoylation, on agonist-induced trafficking of the hIP. Through complementary approaches in yeast and mammalian cells along with computational structural studies, the RBD was localized to a 14-residue domain, between Val299 and Leu312, and proposed to be organized into an eighth α-helical domain (α-helix 8), comprising Val299–Val307, adjacent to the palmitoylated residues at Cys308–Cys311. From mutational and [3H]palmitate metabolic labeling studies, it is proposed that palmitoylation at Cys311 in addition to agonist-regulated deacylation at Cys309 > Cys308 may dynamically position α-helix 8 in proximity to Rab11a, to regulate agonist-induced intracellular trafficking of the hIP. Moreover, Ala-scanning mutagenesis identified several hydrophobic residues within α-helix 8 as necessary for the interaction with Rab11a. Given the diverse membership of the G protein-coupled receptor superfamily, of which many members are also predicted to contain an α-helical 8 domain proximal to TM7 and, often, adjacent to palmitoylable cysteine(s), the identification of a functional role for α-helix 8, as exemplified as an RBD for the hIP, is likely to have broader significance for certain members of the superfamily.


Molecular Biology of the Cell | 2011

Interaction of the human prostacyclin receptor with the PDZ adapter protein PDZK1: role in endothelial cell migration and angiogenesis

Elizebeth C. Turner; Eamon P. Mulvaney; Helen M. Reid; B. Therese Kinsella

Prostacyclin is widely implicated in re-endothelialization and angiogenesis but through unknown mechanisms. Herein the HDL scavenger receptor class B, type 1 adapter PDZK1 was identified as a direct, functional interactant of the human prostacyclin receptor and was found to influence prostacyclin-mediated endothelial migration and in vitro angiogenesis.


Oncotarget | 2015

Protein kinase C-related kinase 1 and 2 play an essential role in thromboxane-mediated neoplastic responses in prostate cancer

Aine G. O’Sullivan; Eamon P. Mulvaney; Paula B. Hyland; B. Therese Kinsella

The prostanoid thromboxane (TX) A2 is increasingly implicated in neoplastic progression, including prostate cancer (PCa). Mechanistically, we recently identified protein kinase C-related kinase (PRK) 1 as a functional interactant of both the TPα and TPβ isoforms of the human T prostanoid receptor (TP). The interaction with PRK1 was not only essential for TPα/TPβ-induced PCa cell migration but also enabled the TXA2-TP axis to induce phosphorylation of histone H3 at Thr11 (H3Thr11), an epigenetic marker both essential for and previously exclusively associated with androgen-induced chromatin remodelling and transcriptional activation. PRK1 is a member of a subfamily of three structurally related kinases comprising PRK1/PKNα, PRK2/PKNγ and PRK3/PKNβ that are widely yet differentially implicated in various cancers. Hence, focusing on the setting of prostate cancer, this study investigated whether TPα and/or TPβ might also complex with PRK2 and PRK3 to regulate their activity and neoplastic responses. While TPα and TPβ were found in immune complexes with PRK1, PRK2 and PRK3 to regulate their activation and signalling, they do so differentially and in a TP agonist-regulated manner dependent on the T-loop activation status of the PRKs but independent of their kinase activity. Furthermore, TXA2-mediated neoplastic responses in prostate adenocarcinoma PC-3 cells, including histone H3Thr11 phosphorylation, was found to occur through a PRK1- and PRK2-, but not PRK3-, dependent mechanism. Collectively, these data suggest that TXA2 acts as both a neoplastic and epigenetic regulator and provides a mechanistic explanation, at least in part, for the prophylactic benefits of Aspirin in reducing the risk of certain cancers.


Cellular Signalling | 2011

Interaction of angio-associated migratory cell protein with the TPα and TPβ isoforms of the human thromboxane A2 receptor

Helen M. Reid; Katarina Wikström; David Kavanagh; Eamon P. Mulvaney; B. Therese Kinsella

In humans, thromboxane (TX) A₂ signals through the TPα and TPβ isoforms of its G-protein coupled TXA₂ receptor (TP) to mediate a host of (patho)physiologic responses. Herein, angio-associated migratory cell protein (AAMP) was identified as a novel interacting partner of both TPα and TPβ through an interaction dependent on common (residues 312-328) and unique (residues 366-392 of TPβ) sequences within their carboxyl-terminal (C)-tail domains. While the interaction was constitutive in mammalian cells, agonist-stimulation of TPα/TPβ led to a transient dissociation of AAMP from immune complexes which coincided with a transient redistribution of AAMP from its localization in an intracellular fibrous network. Although the GTPase RhoA is a downstream effector of both AAMP and the TPs, AAMP did not influence TP-mediated RhoA or vice versa. Small interfering RNA (siRNA)-mediated disruption of AAMP expression decreased migration of primary human coronary artery smooth muscle cells (1° hCoASMCs). Moreover, siRNA-disruption of AAMP significantly impaired 1° hCoASMC migration in the presence of the TXA₂ mimetic U46619 but did not affect VEGF-mediated cell migration. Given their roles within the vasculature, the identification of a specific interaction between TPα/TPβ and AAMP is likely to have substantial functional implications for vascular pathologies in which they are both implicated.


PLOS ONE | 2013

Molecular Analysis of the Prostacyclin Receptor's Interaction with the PDZ1 Domain of Its Adaptor Protein PDZK1.

Gabriel Birrane; Eamon P. Mulvaney; Rinku Pal; B. Therese Kinsella; Olivier Kocher

The prostanoid prostacyclin, or prostaglandin I2, plays an essential role in many aspects of cardiovascular disease. The actions of prostacyclin are mainly mediated through its activation of the prostacyclin receptor or, in short, the IP. In recent studies, the cytoplasmic carboxy-terminal domain of the IP was shown to bind several PDZ domains of the multi-PDZ adaptor PDZK1. The interaction between the two proteins was found to enhance cell surface expression of the IP and to be functionally important in promoting prostacyclin-induced endothelial cell migration and angiogenesis. To investigate the interaction of the IP with the first PDZ domain (PDZ1) of PDZK1, we generated a nine residue peptide (KK411IAACSLC417) containing the seven carboxy-terminal amino acids of the IP and measured its binding affinity to a recombinant protein corresponding to PDZ1 by isothermal titration calorimetry. We determined that the IP interacts with PDZ1 with a binding affinity of 8.2 µM. Using the same technique, we also determined that the farnesylated form of carboxy-terminus of the IP does not bind to PDZ1. To understand the molecular basis of these findings, we solved the high resolution crystal structure of PDZ1 bound to a 7-residue peptide derived from the carboxy-terminus of the non-farnesylated form of IP (411IAACSLC417). Analysis of the structure demonstrates a critical role for the three carboxy-terminal amino acids in establishing a strong interaction with PDZ1 and explains the inability of the farnesylated form of IP to interact with the PDZ1 domain of PDZK1 at least in vitro.


Biochimica et Biophysica Acta | 2017

Regulation of protein kinase C-related kinase (PRK) signalling by the TPα and TPβ isoforms of the human thromboxane A2 receptor: Implications for thromboxane- and androgen- dependent neoplastic and epigenetic responses in prostate cancer

Aine G. O'Sullivan; Eamon P. Mulvaney; B. Therese Kinsella

The prostanoid thromboxane (TX) A2 and its T Prostanoid receptor (the TP) are increasingly implicated in prostate cancer (PCa). Mechanistically, we recently discovered that both TPα and TPβ form functional signalling complexes with members of the protein kinase C-related kinase (PRK) family, AGC- kinases essential for the epigenetic regulation of androgen receptor (AR)-dependent transcription and promising therapeutic targets for treatment of castrate-resistant prostate cancer (CRPC). Critically, similar to androgens, activation of the PRKs through the TXA2/TP signalling axis induces phosphorylation of histone H3 at Thr11 (H3Thr11), a marker of androgen-induced chromatin remodelling and transcriptional activation, raising the possibility that TXA2-TP signalling can mimic and/or enhance AR-induced cellular changes even in the absence of circulating androgens such as in CRPC. Hence the aim of the current study was to investigate whether TXA2/TP-induced PRK activation can mimic and/or enhance AR-mediated cellular responses in the model androgen-responsive prostate adenocarcinoma LNCaP cell line. We reveal that TXA2/TP signalling can act as a neoplastic- and epigenetic-regulator, promoting and enhancing both AR-associated chromatin remodelling (H3Thr11 phosphorylation, WDR5 recruitment and acetylation of histone H4 at lysine 16) and AR-mediated transcriptional activation (e.g of the KLK3/prostate-specific antigen and TMPRSS2 genes) through mechanisms involving TPα/TPβ mediated-PRK1 and PRK2, but not PRK3, signalling complexes. Overall, these data demonstrate that TPα/TPβ can act as neoplastic and epigenetic regulators by mimicking and/or enhancing the actions of androgens within the prostate and provides further mechanistic insights into the role of the TXA2/TP signalling axis in PCa, including potentially in CRPC.


Oncotarget | 2016

Expression of the TPα and TPβ isoforms of the thromboxane prostanoid receptor (TP) in prostate cancer: clinical significance and diagnostic potential

Eamon P. Mulvaney; Christine Shilling; Sarah B. Eivers; Antoinette S. Perry; Anders Bjartell; Elaine Kay; R. William G. Watson; B. Therese Kinsella

The prostanoid thromboxane (TX) A2 plays a central role in haemostasis and is increasingly implicated in cancer progression. TXA2 signals through two T Prostanoid receptor (TP) isoforms termed TPα and TPβ, with both encoded by the TBXA2R gene. Despite exhibiting several functional and regulatory differences, the role of the individual TP isoforms in neoplastic diseases is largely unknown. This study evaluated expression of the TPα and TPβ isoforms in tumour microarrays of the benign prostate and different pathological (Gleason) grades of prostate cancer (PCa). Expression of TPβ was significantly increased in PCa relative to benign tissue and strongly correlated with increasing Gleason grade. Furthermore, higher TPβ expression was associated with increased risk of biochemical recurrence (BCR) and significantly shorter disease-free survival time in patients post-surgery. While TPα was more variably expressed than TPβ in PCa, increased/high TPα expression within the tumour also trended toward increased BCR and shorter disease-free survival time. Comparative genomic CpG DNA methylation analysis revealed substantial differences in the extent of methylation of the promoter regions of the TBXA2R that specifically regulate expression of TPα and TPβ, respectively, both in benign prostate and in clinically-derived tissue representative of precursor lesions and progressive stages of PCa. Collectively, TPα and TPβ expression is differentially regulated both in the benign and tumourigenic prostate, and coincides with clinical pathology and altered CpG methylation of the TBXA2R gene. Analysis of TPβ, or a combination of TPα/TPβ, expression levels may have significant clinical potential as a diagnostic biomarker and predictor of PCa disease recurrence.


Cardiovascular Research | 2018

Urocortin-2 improves right ventricular function and attenuates pulmonary arterial hypertension

R. Adão; P. Mendes-Ferreira; Diana Santos-Ribeiro; C. Maia-Rocha; Luís Pimentel; Cláudia Monteiro-Pinto; Eamon P. Mulvaney; Helen M. Reid; B. Therese Kinsella; François Potus; Sandra Breuils-Bonnet; Miriam T. Rademaker; Steeve Provencher; Sébastien Bonnet; Adelino F. Leite-Moreira; Carmen Brás-Silva

Aims Pulmonary arterial hypertension (PAH) is a devastating disease and treatment options are limited. Urocortin-2 (Ucn-2) has shown promising therapeutic effects in experimental and clinical left ventricular heart failure (HF). Our aim was to analyse the expression of Ucn-2 in human and experimental PAH, and to investigate the effects of human Ucn-2 (hUcn-2) administration in rats with monocrotaline (MCT)-induced pulmonary hypertension (PH). Methods and results Tissue samples were collected from patients with and without PAH and from rats with MCT-induced PH. hUcn-2 (5 μg/kg, bi-daily, i.p., for 10 days) or vehicle was administered to male wistar rats subjected to MCT injection or to pulmonary artery banding (PAB) to induce right ventricular (RV) overload without PAH. Expression of Ucn-2 and its receptor was increased in the RV of patients and rats with PAH. hUcn-2 treatment reduced PAH in MCT rats, resulting in decreased morbidity, improved exercise capacity and attenuated pulmonary arterial and RV remodelling and dysfunction. Additionally, RV gene expression of hypertrophy and failure signalling pathways were attenuated. hUcn-2 treatment also attenuated PAB-induced RV hypertrophy. Conclusions Ucn-2 levels are altered in human and experimental PAH. hUcn-2 treatment attenuates PAH and RV dysfunction in MCT-induced PH, has direct anti-remodelling effects on the pressure-overloaded RV, and improves pulmonary vascular function.


Biochimica et Biophysica Acta | 2017

Regulated expression of the TPβ isoform of the human T prostanoid receptor by the tumour suppressors FOXP1 and NKX3.1: Implications for the role of thromboxane in prostate cancer

Aine G. O'Sullivan; Sarah B. Eivers; Eamon P. Mulvaney; B. Therese Kinsella

The prostanoid thromboxane (TX)A2 signals through the TPα and TPβ isoforms of T Prostanoid receptor (TP) that are transcriptionally regulated by distinct promoters termed Prm1 and Prm3, respectively, within the TBXA2R gene. We recently demonstrated that expression of TPα and TPβ is increased in PCa, differentially correlating with Gleason grade and with altered CpG methylation of the individual Prm1/Prm3 regions within the TBXA2R. The current study sought to localise the sites of CpG methylation within Prm1 and Prm3, and to identify the main transcription factors regulating TPβ expression through Prm3 in the prostate adenocarcinoma PC-3 and LNCaP cell lines. Bisulfite sequencing revealed extensive differences in the pattern and status of CpG methylation of the individual Prm1 and Prm3 regions that regulate TPα and TPβ expression, respectively, within the TBXA2R. More specifically, Prm1 is predominantly hypomethylated while Prm3 is hypermethylated across its entire sequence in PC-3 and LNCaP cells. Furthermore, the tumour suppressors FOXP1 and NKX3.1, strongly implicated in PCa development, were identified as key transcription factors regulating TPβ expression through Prm3 in both PCa cell lines. Specific siRNA-disruption of FOXP1 and NKX3.1 each coincided with up-regulated TPβ protein and mRNA expression, while genetic-reporter and chromatin immunoprecipitation (ChIP) analyses confirmed that both FOXP1 and NKX3.1 bind to cis‑elements within Prm3 to transcriptionally repress TPβ in the PCa lines. Collectively these data identify Prm3/TPβ as a bona fide target of FOXP1 and NKX3.1 regulation, providing a mechanistic basis, at least in part, for the highly significant upregulation of TPβ expression in PCa.

Collaboration


Dive into the Eamon P. Mulvaney's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen M. Reid

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paula B. Hyland

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah B. Eivers

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge