Eamonn P. Culligan
University College Cork
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eamonn P. Culligan.
Virulence | 2014
Eamonn P. Culligan; Roy D. Sleator; Julian Roberto Marchesi; Colin Hill
Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics.
The ISME Journal | 2012
Eamonn P. Culligan; Roy D. Sleator; Julian Roberto Marchesi; Colin Hill
Metagenomics is a powerful tool that allows for the culture-independent analysis of complex microbial communities. One of the most complex and dense microbial ecosystems known is that of the human distal colon, with cell densities reaching up to 1012 per gram of faeces. With the majority of species as yet uncultured, there are an enormous number of novel genes awaiting discovery. In the current study, we conducted a functional screen of a metagenomic library of the human gut microbiota for potential salt-tolerant clones. Using transposon mutagenesis, three genes were identified from a single clone exhibiting high levels of identity to a species from the genus Collinsella (closest relative being Collinsella aerofaciens) (COLAER_01955, COLAER_01957 and COLAER_01981), a high G+C, Gram-positive member of the Actinobacteria commonly found in the human gut. The encoded proteins exhibit a strong similarity to GalE, MurB and MazG. Furthermore, pyrosequencing and bioinformatic analysis of two additional fosmid clones revealed the presence of an additional galE and mazG gene, with the highest level of genetic identity to Akkermansia muciniphila and Eggerthella sp. YY7918, respectively. Cloning and heterologous expression of the genes in the osmosensitive strain, Escherichia coli MKH13, resulted in increased salt tolerance of the transformed cells. It is hoped that the identification of atypical salt tolerance genes will help to further elucidate novel salt tolerance mechanisms, and will assist our increased understanding how resident bacteria cope with the osmolarity of the gastrointestinal tract.
PLOS ONE | 2013
Eamonn P. Culligan; Roy D. Sleator; Julian Roberto Marchesi; Colin Hill
Functional environmental screening of metagenomic libraries is a powerful means to identify and assign function to novel genes and their encoded proteins without any prior sequence knowledge. In the current study we describe the identification and subsequent analysis of a salt-tolerant clone from a human gut metagenomic library. Following transposon mutagenesis we identified an unknown gene (stlA, for “salt tolerance locus A”) with no current known homologues in the databases. Subsequent cloning and expression in Escherichia coli MKH13 revealed that stlA confers a salt tolerance phenotype in its surrogate host. Furthermore, a detailed in silico analysis was also conducted to gain additional information on the properties of the encoded StlA protein. The stlA gene is rare when searched against human metagenome datasets such as MetaHit and the Human Microbiome Project and represents a novel and unique salt tolerance determinant which appears to be found exclusively in the human gut environment.
PLOS ONE | 2014
Eamonn P. Culligan; Roy D. Sleator; Julian Roberto Marchesi; Colin Hill
The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.
Gut microbes | 2012
Eamonn P. Culligan; Julian Roberto Marchesi; Colin Hill; Roy D. Sleator
With the rapid advances in sequencing technologies in recent years, the human genome is now considered incomplete without the complementing microbiome, which outnumbers human genes by a factor of one hundred. The human microbiome, and more specifically the gut microbiome, has received considerable attention and research efforts over the past decade. Many studies have identified and quantified “who is there?,” while others have determined some of their functional capacity, or “what are they doing?” In a recent study, we identified novel salt-tolerance loci from the human gut microbiome using combined functional metagenomic and bioinformatics based approaches. Herein, we discuss the identified loci, their role in salt-tolerance and their importance in the context of the gut environment. We also consider the utility and power of functional metagenomics for mining such environments for novel genes and proteins, as well as the implications and possible applications for future research.
Frontiers in Microbiology | 2014
Eamonn P. Culligan; Julian Roberto Marchesi; Colin Hill; Roy D. Sleator
In the current study, a number of salt-tolerant clones previously isolated from a human gut metagenomic library were screened using Phenotype MicroArray (PM) technology to assess their functional capacity. PMs can be used to study gene function, pathogenicity, metabolic capacity and identify drug targets using a series of specialized microtitre plate assays, where each well of the microtitre plate contains a different set of conditions and tests a different phenotype. Cellular respiration is monitored colorimetrically by the reduction of a tetrazolium dye. One clone, SMG 9, was found to be positive for utilization/transport of L-carnitine (a well-characterized osmoprotectant) in the presence of 6% w/v sodium chloride (NaCl). Subsequent experiments revealed a significant growth advantage in minimal media containing NaCl and L-carnitine. Fosmid sequencing revealed putative candidate genes responsible for the phenotype. Subsequent cloning of two genes did not replicate the L-carnitine-associated phenotype, although one of the genes, a σ54-dependent transcriptional regulator, did confer salt tolerance to Escherichia coli when expressed in isolation. The original clone, SMG 9, was subsequently found to have lost the original observed phenotype upon further investigation. Nevertheless, this study demonstrates the usefulness of a phenomic approach to assign a functional role to metagenome-derived clones.
Journal of Clinical Medicine | 2016
Eamonn P. Culligan; Roy D. Sleator
Clostridium difficile is a major cause of morbidity and mortality worldwide, causing over 400,000 infections and approximately 29,000 deaths in the United States alone each year. C. difficile is the most common cause of nosocomial diarrhoea in the developed world, and, in recent years, the emergence of hyper-virulent (mainly ribotypes 027 and 078, sometimes characterised by increased toxin production), epidemic strains and an increase in the number of community-acquired infections has caused further concern. Antibiotic therapy with metronidazole, vancomycin or fidaxomicin is the primary treatment for C. difficile infection (CDI). However, CDI is unique, in that, antibiotic use is also a major risk factor for acquiring CDI or recurrent CDI due to disruption of the normal gut microbiota. Therefore, there is an urgent need for alternative, non-antibiotic therapeutics to treat or prevent CDI. Here, we review a number of such potential treatments which have emerged from advances in the field of microbiome research.
Annual Review of Food Science and Technology - (new in 2010) | 2017
Babasola Sola-Oladokun; Eamonn P. Culligan; Roy D. Sleator
Bioengineered probiotics represent the next generation of whole cell-mediated biotherapeutics. Advances in synthetic biology, genome engineering, and DNA sequencing and synthesis have enabled scientists to design and develop probiotics with increased stress tolerance and the ability to target specific pathogens and their associated toxins, as well as to mediate targeted delivery of vaccines, drugs, and immunomodulators directly to host cells. Herein, we review the most significant advances in the development of this field. We discuss the critical issue of biological containment and consider the role of synthetic biology in the design and construction of the probiotics of the future.
Genes | 2018
Amber Hilliard; Dara Leong; Amy O’Callaghan; Eamonn P. Culligan; Ciara A. Morgan; Niall DeLappe; Colin Hill; Kieran Jordan; Martin Cormican; Cormac G. M. Gahan
Listeria monocytogenes is a major human foodborne pathogen that is prevalent in the natural environment and has a high case fatality rate. Whole genome sequencing (WGS) analysis has emerged as a valuable methodology for the classification of L. monocytogenes isolates and the identification of virulence islands that may influence infectivity. In this study, WGS was used to provide an insight into 25 L. monocytogenes isolates from cases of clinical infection in Ireland between 2013 and 2015. Clinical strains were either lineage I (14 isolates) or lineage II (11 isolates), with 12 clonal complexes (CC) represented, of which CC1 (6) and CC101 (4) were the most common. Single nucleotide polymorphism (SNP) analysis demonstrated that clinical isolates from mother–infant pairs (one isolate from the mother and one from the infant) were highly related (3 SNP differences in each) and also identified close similarities between isolates from otherwise distinct cases (1 SNP difference). Clinical strains were positive for common virulence-associated loci and 13 isolates harbour the LIPI-3 locus. Pulsed-field gel electrophoresis (PFGE) was used to compare strains to a database of 1300 Irish food and food processing environment isolates and determined that 64% of clinical pulsotypes were previously encountered in the food or food processing environment. Five of the matching food and food processing environment isolates were sequenced and results demonstrated a correlation between pulsotype and genotype. Overall, the work provides insights into the nature of L. monocytogenes strains currently causing clinical disease in Ireland and indicates that similar isolates can be found in the food or food processing environment.
Human Vaccines & Immunotherapeutics | 2014
Aurélie Hanin; Eamonn P. Culligan; Pat G. Casey; Mohammed Bahey-El-Din; Colin Hill; Cormac G. M. Gahan
The concept of biological containment was developed as a strategy to prevent environmental dissemination of engineered live vaccine or drug delivery vehicles. A mutation in the gene encoding thymidylate synthase (thyA), a key enzyme in the pyrimidine biosynthetic pathway, has previously been shown to limit growth of L. lactis vectors under restrictive conditions. We hypothesized that further mutations in the pyrimidine biosynthetic pathway might enhance the stability and safety of live L. lactis vectors. We show that a double mutation in the genes encoding ThyA and CTP synthase (PyrG) in L. lactis confers double auxotrophy for both thymidine and cytidine. However, the combination of two mutations failed to enhance the biological containment phenotype of the engineered strain. In the absence of thymine/thymidine, the thyA mutant exhibited a strong bactericidal phenotype. However, creation of the double mutant caused the loss of this phenotype, though survival in the mouse GI tract was enhanced. The implications for biological containment of live L. lactis based delivery vectors are discussed.