Earl T. Larson
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Earl T. Larson.
Behavioural Brain Research | 2006
Earl T. Larson; Donald M. O’Malley; Richard H. Melloni
Agonistic interactions are present throughout the animal kingdom as well as in humans. In this report, we present a model system to study neurological correlates of dominant-subordinate relationships. Zebrafish, Danio rerio, has been used as a model system for developmental biology for decades. We propose here that it is also an excellent model for studying social behavior. Adult male zebrafish were separated for 5 days and then pairs were formed and allowed to interact for 5 days. Under these conditions, aggression is prevalent and dominant-subordinate relationships are quickly established. Dominant behavior is characterized by a repeated pattern of chasing and biting, whereas subordinates engage in retreats. By day 5, the dominant-subordinate relationship was firmly established and there were differences in behavior over time. Chases, bites and retreats were all less frequent on day 5 of the social interaction than on day 1. Arginine vasotocin is the teleostean homologue of arginine vasopressin, a neuropeptide whose expression has been linked to aggression and social position in mammals. Immunohistochemistry indicated differences in vasotocin staining between dominant and subordinate individuals. Dominant individuals express vasotocin in one to three pairs of large cells in the magnocellular preoptic area whereas subordinate individuals express vasotocin in 7-11 pairs of small cells in the parvocellular preoptic area. These results suggest that the vasotocinergic system may play a role in shaping dominant-subordinate relationships and agonistic behavior in this model organism.
Hormones and Behavior | 2004
Øyvind Øverli; Wayne J. Korzan; Earl T. Larson; Svante Winberg; Olivier Lepage; Tom G. Pottinger; Kenneth J. Renner; Cliff H. Summers
In humans and other primates, violent actions performed by victims of aggression are often directed toward an individual or object that is not the source of provocation. This psychological phenomenon is often called displaced aggression. We demonstrate that displaced aggression is either rooted in evolutionarily conserved behavioral and neuroendocrine mechanisms, or represent a convergent pattern that has arisen independently in fish and mammals. Rainbow trout that briefly encountered large, aggressive fish reacted with increased aggression toward smaller individuals. There was a strong negative correlation between received aggression and behavioral change: Individuals subjected to intense aggression were subdued, while moderate assaults induced strong agitation. Patterns of forebrain serotonin turnover and plasma cortisol suggest that the presence of socially subordinate fish had an inhibitory effect on neuroendocrine stress responses. Thus, subordinate individuals may serve as stress-reducing means of aggressive outlet, and displaced aggression toward such individuals appears to be a behavioral stress coping strategy in fishes.
Physiological and Biochemical Zoology | 2005
Cliff H. Summers; Wayne J. Korzan; Jodi L. Lukkes; Michael J. Watt; Gina L. Forster; Øyvind Øverli; Erik Höglund; Earl T. Larson; Patrick J. Ronan; John M. Matter; Tangi R. Summers; Kenneth J. Renner; Neil Greenberg
Serotonin is widely believed to exert inhibitory control over aggressive behavior and intent. In addition, a number of studies of fish, reptiles, and mammals, including the lizard Anolis carolinensis, have demonstrated that serotonergic activity is stimulated by aggressive social interaction in both dominant and subordinate males. As serotonergic activity does not appear to inhibit agonistic behavior during combative social interaction, we investigated the possibility that the negative correlation between serotonergic activity and aggression exists before aggressive behavior begins. To do this, putatively dominant and more aggressive males were determined by their speed overcoming stress (latency to feeding after capture) and their celerity to court females. Serotonergic activities before aggression are differentiated by social rank in a region‐specific manner. Among aggressive males baseline serotonergic activity is lower in the septum, nucleus accumbens, striatum, medial amygdala, anterior hypothalamus, raphe, and locus ceruleus but not in the hippocampus, lateral amygdala, preoptic area, substantia nigra, or ventral tegmental area. However, in regions such as the nucleus accumbens, where low serotonergic activity may help promote aggression, agonistic behavior also stimulates the greatest rise in serotonergic activity among the most aggressive males, most likely as a result of the stress associated with social interaction.
Hormones and Behavior | 2005
Olivier Lepage; Earl T. Larson; Ian Mayer; Svante Winberg
The aim of this study was to clarify to what extent the effects of elevated dietary L-tryptophan (Trp) on aggressive behavior and stress responsiveness in rainbow trout are mediated by circulating melatonin and central serotonin (5-HT), respectively. Isolated rainbow trout were paired for 1h a day for 7 days in order to create fish with experience of being dominant and subordinate. Following this week, the fish were tested for aggressive behavior using a resident-intruder test after which they were subjected to one of four treatments: (1) tryptophan, (2) the selective serotonin reuptake inhibitor (SSRI) citalopram, (3) melatonin, and (4) no treatment (controls). After 7 days of treatment, the fish were subjected to a second resident-intruder test. Trp-supplemented feed resulted in a suppression of aggressive behavior in fish with experience of being dominant. Moreover, fish fed Trp-supplemented feed, regardless of social experience, also displayed lower plasma cortisol levels than controls. These effects of elevated dietary Trp were closely mimicked by citalopram treatment, whereas exogenous melatonin had no effect on either aggressive behavior or plasma cortisol. Thus, the effect of elevated dietary Trp on aggressive behavior and stress responses does not appear to be mediated by melatonin even though elevated dietary intake of Trp resulted in an increase in plasma melatonin concentrations.
Biochemical Journal | 2004
Tatjana Haitina; Janis Klovins; Jan Andersson; Robert Fredriksson; Malin C. Lagerström; Dan Larhammar; Earl T. Larson; Helgi B. Schiöth
The rainbow trout (Oncorhynchus mykiss) is one of the most widely used fish species in aquaculture and physiological research. In the present paper, we report the first cloning, 3D (three-dimensional) modelling, pharmacological characterization and tissue distribution of two melanocortin (MC) receptors in rainbow trout. Phylogenetic analysis indicates that these receptors are orthologues of the human MC4 and MC5 receptors. We created 3D molecular models of these rainbow trout receptors and their human counterparts. These models suggest greater divergence between the two human receptors than between their rainbow trout counterparts. The pharmacological analyses demonstrated that ACTH (adrenocorticotropic hormone) had surprisingly high affinity for the rainbow trout MC4 and MC5 receptors, whereas alpha-, beta- and gamma-MSH (melanocyte-stimulating hormone) had lower affinity. In second-messenger studies, the cyclic MSH analogues MTII and SHU9119 acted as potent agonist and antagonist respectively at the rainbow trout MC4 receptor, indicating that these ligands are suitable for physiological studies in rainbow trout. Interestingly, we found that the rainbow trout MC4 receptor has a natural high-affinity binding site for zinc ions (0.5 microM) indicating that zinc may play an evolutionary conserved role at this receptor. Reverse transcription PCR indicates that the rainbow trout receptors are expressed both in peripheral tissues and in the central nervous system, including the telencephalon, optic tectum and hypothalamus. Overall, this analysis indicates that the rainbow trout MC4 and MC5 receptors have more in common than their mammalian counterparts, which may suggest that these two receptors have a closer evolutionary relationship than the other MC receptor subtypes.
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2005
Cliff H. Summers; Gina L. Forster; Wayne J. Korzan; Michael J. Watt; Earl T. Larson; Øyvind Øverli; Erik Höglund; Patrick J. Ronan; Tangi R. Summers; Kenneth J. Renner; Neil Greenberg
Stable social relationships are rearranged over time as resources such as favored territorial positions change. We test the hypotheses that social rank relationships are relatively stable, and although social signals influence aggression and rank, they are not as important as memory of an opponent. In addition, we hypothesize that eyespots, aggression and corticosterone influence serotonin and N-methyl-D-aspartate (NMDA) systems in limbic structures involved in learning and memory. In stable adult dominant-subordinate relationships in the lizard Anolis carolinensis, social rank can be reversed by pharmacological elevation of limbic serotonergic activity. Any pair of specific experiences: behaving aggressively, viewing aggression or perceiving sign stimuli indicative of dominant rank also elevate serotonergic activity. Differences in the extent of serotonergic activation may be a discriminating and consolidating factor in attaining superior rank. For instance, socially aggressive encounters lead to increases in plasma corticosterone that stimulate both serotonergic activity and expression of the NMDA receptor subunit 2B (NR2B) within the CA3 region of the lizard hippocampus. Integration of these systems will regulate opponent recognition and memory, motivation to attack or retreat, and behavioral and physiological reactions to stressful social interactions. Contextually appropriate social responses provide a modifiable basis for coping with the flexibility of social relationships.
BMC Evolutionary Biology | 2007
Tatjana Haitina; Janis Klovins; Akiyoshi Takahashi; Maja Löwgren; Aneta Ringholm; Johan Enberg; Hiroshi Kawauchi; Earl T. Larson; Robert Fredriksson; Helgi B. Schiöth
BackgroundThe melanocortin (MC) receptors have a key role in regulating body weight and pigmentation. They belong to the rhodopsin family of G protein-coupled receptors (GPCRs). The purpose of this study was to identify ancestral MC receptors in agnathan, river lamprey.ResultsWe report cloning of two MC receptors from river lamprey. The lamprey receptors, designated MCa and MCb, showed orthology to the MC1 and MC4 receptor subtypes, respectively. The molecular clock analysis suggested that lamprey MC receptor genes were not duplicated recently and diverged from each other more than 400 MYR ago. Expression and pharmacological characterization showed that the lamprey MCa receptor was able to bind and be activated by both lamprey and human MSH peptides. The lamprey MCa receptor had relatively high affinity for ACTH derived peptides similarly to the fish MC receptors. We found that both of the lamprey MC receptors were expressed in skin, while the MCb receptor was also found in liver, heart and skeletal muscle.ConclusionThis study shows presence of MC receptors in agnathans indicating early signs of specific functions of melanocortin receptor subtypes.
Journal of Pineal Research | 2005
Olivier Lepage; Earl T. Larson; Ian Mayer; Svante Winberg
Abstract: The present experiments were designed to test the hypothesis that elevated dietary levels of l‐tryptophan (Trp) result in elevated plasma levels of melatonin and that this increase in plasma melatonin concentration is caused by elevated melatonin production and secretion by the gastro‐intestinal‐tract (GIT). Feeding juvenile rainbow trout (Oncorhynchus mykiss) Trp‐supplemented feed for 7 days resulted in elevated daytime plasma levels of melatonin and reduced poststress plasma cortisol concentrations. Nighttime plasma melatonin concentrations were, however, not affected by elevated dietary Trp. Moreover, stress caused a reduction in daytime plasma levels of melatonin in fish fed Trp‐supplemented feed, an effect that was counteracted by treatment with an α‐receptor antagonist. These results clearly suggest that elevated dietary intake of Trp results in an increase in the GIT production of melatonin in rainbow trout. A suggestion that was further supported by the results from an in vitro experiment demonstrating that addition of Trp to the incubation medium stimulates melatonin production and release by incubated rainbow trout GIT. The results from this study led us to suggest a possible mechanism for melatonin in mediating the effects of elevated dietary Trp on poststress plasma cortisol concentrations and aggressive behavior in rainbow trout.
Journal of Molecular Evolution | 2004
Robert Fredriksson; Earl T. Larson; Yi-Lin Yan; John H. Postlethwait; Dan Larhammar
The Y receptors comprise a family of G-protein coupled receptors with neuropeptide Y-family peptides as endogenous ligands. The Y receptor family has five members in mammals and evolutionary data suggest that it diversified in the two genome duplications proposed to have occurred early in vertebrate evolution. If this theory holds true, it allows for additional family members to be present. We describe here the cloning, pharmacological characterization, tissue distribution, and chromosomal localization of a novel subtype of the Y-receptor family, named Y7, from the zebrafish. We also present Y7 sequences from rainbow trout and two amphibians. The new receptor is most similar to Y2, with 51–54% identity. As Y2 has also been cloned from some of these species, there clearly are two separate Y2-subfamily genes. Chromosomal mapping in zebrafish supports origin of Y7 as a duplicate of Y2 by chromosome duplication in an early vertebrate. Y7 has probably been lost in the lineage leading to mammals. The pharmacological profile of the zebrafish Y7 receptor is different from mammalian Y2, as it does not bind short fragments of NPY with a high affinity. The Y7 receptor supports the theory of early vertebrate genome duplications and suggests that the Y family of receptors is a result of these early genome duplications.
Gene | 2008
Erik Salaneck; Tomas A. Larsson; Earl T. Larson; Dan Larhammar
Extensive evidence exists for a genome duplication in the fish lineage leading to the species-rich clade of the teleosts, comprising > 99% of the known actinopterygian (ray-finned) fish species. Our previous studies of the neuropeptide Y receptor (NPYR) gene family suggested an ancestral gnathostome repertoire of 7 genes in 3 subfamilies. However, studies in the zebrafish have earlier identified only 5 NPYR genes, despite the expected increase in gene number due to the teleost tetraploidization. Notably, receptors Y(1), Y(5) and Y(6) were missing in the zebrafish genome database and only Y(8) had been duplicated. We report here an investigation of the evolutionary history of the Y(1) subfamily (Y(1), Y(4), Y(6) and Y(8)) and the Y(5) receptor. Seven basal actinopterygian species and a shark were investigated and a total of 22 gene fragments were cloned and analyzed. Our results show that subtypes Y(1), Y(5) and Y(6) still exist in species representing basal actinopterygian lineages (bichir, sturgeon, gar and bowfin) as well as in some basal teleost lineages. Surprisingly we identified a zebrafish Y(1) receptor, the first Y(1) receptor found in euteleosts. Thus, these findings confirm the ancestral gnathostome repertoire of 7 NPYR genes and show that many of these receptors are present in basal actinopterygians as well as some basal teleosts. NPYR losses seem to have occurred relatively recently in euteleosts because Y(1), Y(5) and Y(6) are absent in the genome databases of two pufferfishes as well as medaka and stickleback and Y(5) and Y(6) are absent in the zebrafish database. A duplicate of Y(8) seems to be the only remaining receptor gene resulting from the teleost tetraploidization. The unexpected absence of the two appetite-stimulating receptors Y(1) and Y(5) in some euteleosts, along with our discovery of duplicates of the peptide ligands NPY and PYY, has implications for the role of the NPY system in euteleost feeding behavior.