Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ebbe Billmann Thorgersen is active.

Publication


Featured researches published by Ebbe Billmann Thorgersen.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Human genetic deficiencies reveal the roles of complement in the inflammatory network: Lessons from nature

Knut Tore Lappegård; Dorte Christiansen; Anne Pharo; Ebbe Billmann Thorgersen; Bernt Christian Hellerud; Julie Katrine Lindstad; Erik Waage Nielsen; Grethe Bergseth; Dag Fadnes; Tore G. Abrahamsen; Ernst Arne Høiby; Lone Schejbel; Peter Garred; John D. Lambris; Morten Harboe; Tom Eirik Mollnes

Complement component C5 is crucial for experimental animal inflammatory tissue damage; however, its involvement in human inflammation is incompletely understood. The responses to Gram-negative bacteria were here studied taking advantage of human genetic complement-deficiencies—natures own knockouts—including a previously undescribed C5 defect. Such deficiencies provide a unique tool for investigating the biological role of proteins. The experimental conditions allowed cross-talk between the different inflammatory pathways using a whole blood model based on the anticoagulant lepirudin, which does not interfere with the complement system. Expression of tissue factor, cell adhesion molecules, and oxidative burst depended highly on C5, mediated through the activation product C5a, whereas granulocyte enzyme release relied mainly on C3 and was C5a-independent. Release of cytokines and chemokines was mediated to varying degrees by complement and CD14; for example, interleukin (IL)-1β and IL-8 were more dependent on complement than IFN-γ and IL-6, which were highly dependent on CD14. IL-1 receptor antagonist (IL-1ra) and IFN-γ inducible protein 10 (IP-10) were fully dependent on CD14 and inversely regulated by complement, that is, complement deficiency and complement inhibition enhanced their release. Granulocyte responses were mainly complement-dependent, whereas monocyte responses were more dependent on CD14. Notably, all responses were abolished by combined neutralization of complement and CD14. The present study provides important insight into the comprehensive role of complement in human inflammatory responses to Gram-negative bacteria.


The FASEB Journal | 2010

CD14 inhibition efficiently attenuates early inflammatory and hemostatic responses in Escherichia coli sepsis in pigs

Ebbe Billmann Thorgersen; Bernt Christian Hellerud; Erik Waage Nielsen; Andreas Barratt-Due; Hilde Fure; Julie Katrine Lindstad; Anne Pharo; Erik Fosse; Tor Inge Tønnessen; Harald Thidemann Johansen; Albert Castellheim; Tom Eirik Mollnes

Sepsis is a severe infection‐induced systemic inflammatory syndrome. Inhibition of downstream inflammatory mediators of sepsis, e.g., TNF‐α, has failed in clinical trials. The aim of this study was to investigate the effects of inhibiting CD14, a key upstream innate immunity molecule, on the early inflammatory and hemostatic responses in a pig model of gram‐negative sepsis. The study comprised two arms, whole live Escherichia coli bacteria and E. coli lipopolysaccharide (LPS) (n=25 and n=9 animals, respectively). The animals were allocated into treatment (antiCD14) and control (IgG isotype or saline) groups. Inflammatory, hemostatic, physiological, and microbiological parameters were measured. The proinflammatory cytokines TNF‐α, IL‐1β, IL‐6, and IL‐8, but not the anti‐inflammatory cytokine IL‐10, were efficiently inhibited by anti‐CD14. Furthermore, anti‐CD14 preserved the leukocyte count and significantly reduced granulocyte enzyme matrix metalloproteinase‐9 release and expression of the granulocyte membrane activation molecule wCD11R3 (pig CD11b). The hemostatic markers thrombin‐antithrombin III complexes and plasminogen activator inhibitor‐1 were significantly attenuated. Anti‐CD14 did not affect LPS or E. coli DNA levels. This study documents that CD14 inhibition efficiently attenuates the proinflammatory cytokine response and granulocyte activation and reverses the procoagulant state but does not interfere with LPS levels or bacterial counts in E. coli‐induced sepsis.— Thorgersen, E. B., Hellerud, B. C., Nielsen, E. W., Barratt‐Due, A., Fure, H., Lindstad, J. K., Pharo, A., Fosse, E., Tønnessen, T. I., Johansen, H. T., Castellheim, A., Mollnes, T. E. CD14 inhibition efficiently attenuates early inflammatory and hemostatic responses in Escherichia coli sepsis in pigs. FASEB J. 24, 712–722 (2010). www.fasebj.org


Transplantation | 2008

Microdialysis Monitoring of Liver Grafts by Metabolic Parameters, Cytokine Production, and Complement Activation

Lars Wælgaard; Ebbe Billmann Thorgersen; Pål-Dag Line; Aksel Foss; Tom Eirik Mollnes; Tor Inge Tønnessen

Introduction. The outcome of liver transplantation is steadily improving. Still there is need for earlier detection of complications like hepatic artery thrombosis and rejection. The aim of this study was to explore whether microdialysis with a 100-kDa cutoff filter could be used to monitor local inflammation after liver transplantation. Methods. Twenty patients undergoing liver transplantations were observed for 1 week posttransplant. Microdialysis catheters were introduced in each liver lobe subcutaneously and metabolic parameters (glucose, pyruvate, glycerol, and lactate), cytokines (interleukin [IL]-6, IL-8, monocyte chemottractic protein-1, and inducible protein [IP]-10), and complement activation (C5a) were measured. Results. Fourteen patients experienced an uneventful course, judged clinically by ultrasound Doppler and by metabolic markers including lactate and the ischemia indicator lactate-to-pyruvate ratio. All patients with uneventful course had a consistent rise in IP-10 from 200 to 3000 pg/mL after transplantation, whereas the other cytokines stayed low. Two patients with rejection showed a selective increase in IL-8 and C5a, starting 2 to 4 days before alanine transferase increased, reaching 10- to 50-fold increase compared with baseline levels, and decreased rapidly after start of antirejection therapy. C5a concentration was substantially increased in these two patients at the time of transplantation. A third patient developed a hepatic artery thrombosis and rejection and showed a rapid rise in intrahepatic lactate and a complex inflammatory pattern. Conclusion. Microdialysis using a 100-kDa filter is a promising way of monitoring the inflammatory reaction after liver transplantation. Increase in IP-10 reflects a normal pathophysiologic response posttransplant, whereas IL-8 and C5a were increased only in patients with rejection.


Journal of Immunology | 2011

Ornithodoros moubata Complement Inhibitor Is an Equally Effective C5 Inhibitor in Pigs and Humans

Andreas Barratt-Due; Ebbe Billmann Thorgersen; Julie Katrine Lindstad; Anne Pharo; Olga Lissina; John D. Lambris; Miles A. Nunn; Tom Eirik Mollnes

Experimental evidence suggests that C inhibition and more particularly combined inhibition of C and the TLR coreceptor CD14 may be of therapeutic benefit in sepsis and other inflammatory conditions. A barrier to the testing and further development of many inhibitors is that their activity is species specific. Pig is a relevant species for experimental models of human disease, and this study undertakes a comprehensive comparison of the inhibitory efficacy of the C5 inhibitor Ornithodoros moubata C inhibitor (OmCI) in human and porcine whole blood ex vivo models of Escherichia coli-induced sepsis. The effect of OmCI on complement activity in pigs undergoing E. coli sepsis was also examined. Porcine and human serum, and whole blood anticoagulated with lepirudin, was incubated with E. coli and the effect of OmCI investigated. The ex vivo results were virtually identical in pig and human. OmCI completely ablated the activity of all three C pathways at 0.64 μM. E. coli-induced C activation and expression of CD11b (wCD11R3 in the pig), was abolished ex vivo at 0.32 μM OmCI. Combining anti-CD14 and OmCI reduced the formation of IL-8 and TNF-α more potently than the single inhibitors. OmCI also efficiently bound E. coli-induced leukotriene B4 in pig and human plasma. In support of our ex vivo findings, in vivo the activity of all C pathways was inhibited at 0.6 mg OmCI/kg pig. In conclusion, OmCI efficiently inhibited pig and human C activation, has accompanying anti-inflammatory effects and is a promising candidate inhibitor for further in vivo studies of sepsis.


Scandinavian Journal of Immunology | 2008

New biomarkers in an acute model of live Escherichia coli-induced sepsis in pigs.

Albert Castellheim; Ebbe Billmann Thorgersen; Bernt Christian Hellerud; Anne Pharo; Harald Thidemann Johansen; Frank Brosstad; Peter Gaustad; H. Brun; Erik Fosse; Tor Inge Tønnessen; Erik Waage Nielsen; Tom Eirik Mollnes

We developed a live Escherichia coli model of acute sepsis in pigs with emphasize on biomarkers reflecting the early inflammatory response of sepsis. Healthy pigs, 25–35 kg, were challenged intravenously (IV) (n = 12) or intrapulmonary (n = 6) with live E. coli and observed for 3 and 5 h respectively. Control pigs received culture medium (n = 6 + 3). Haemodynamic parameters and a broad panel of inflammatory mediators were measured. The dose of bacteria was carefully titrated to obtain a condition resembling the early phase of human septic shock. The IV group displayed a pro‐inflammatory response [significant increase in tumour necrosis factor‐α, interleukin (IL)‐6 and IL‐8] and an early anti‐inflammatory response (significant increase in IL‐10). For the first time, we demonstrate a significant increase in IL‐12 and matrix metalloproteinase‐9 (MMP) early in pig sepsis. Coagulation was activated (significant increase in thrombin–antithrombin complexes) and there was a significant decrease in the serum proteins suggesting capillary leakage. Haemodynamic parameters reflected a septic condition with significant decrease in systemic blood pressure, increases in heart rate, pulmonary artery pressure and base deficit. None of these changes was observed in the control group. Interleukin‐1β and vascular endothelial growth factor increased in both groups. Nitric oxide measurements suggested an initial pulmonary vascular endothelial inflammatory response. The intrapulmonary group, which did not resemble septic condition, showed a substantial increase in MMP‐9. In this porcine model of sepsis, IL‐12 and MMP‐9 were detected for the first time. These biomarkers may have an impact in the understanding and future treatment of sepsis.


Journal of Immunology | 2013

Combined Inhibition of Complement (C5) and CD14 Markedly Attenuates Inflammation, Thrombogenicity, and Hemodynamic Changes in Porcine Sepsis

Andreas Barratt-Due; Ebbe Billmann Thorgersen; Kjetil Egge; Søren E. Pischke; Andrey Sokolov; Bernt Christian Hellerud; Julie Katrine Lindstad; Anne Pharo; Anjan K. Bongoni; Robert Rieben; Miles A. Nunn; Helge Scott; Tom Eirik Mollnes

Complement and the TLR family constitute two important branches of innate immunity. We previously showed attenuating effects on inflammation and thromogenicity by inhibiting the TLR coreceptor CD14 in porcine sepsis. In the present study, we explored the effect of the C5 and leukotriene B4 inhibitor Ornithodoros moubata complement inhibitor (OmCI; also known as coversin) alone and combined with anti-CD14 on the early inflammatory, hemostatic, and hemodynamic responses in porcine Escherichia coli–induced sepsis. Pigs were randomly allocated to negative controls (n = 6), positive controls (n = 8), intervention with OmCI (n = 8), or with OmCI and anti-CD14 (n = 8). OmCI ablated C5 activation and formation of the terminal complement complex and significantly decreased leukotriene B4 levels in septic pigs. Granulocyte tissue factor expression, formation of thrombin–antithrombin complexes (p < 0.001), and formation of TNF-α and IL-6 (p < 0.05) were efficiently inhibited by OmCI alone and abolished or strongly attenuated by the combination of OmCI and anti-CD14 (p < 0.001 for all). Additionally, the combined therapy attenuated the formation of plasminogen activator inhibitor-1 (p < 0.05), IL-1β, and IL-8, increased the formation of IL-10, and abolished the expression of wCD11R3 (CD11b) and the fall in neutrophil cell count (p < 0.001 for all). Finally, OmCI combined with anti-CD14 delayed increases in heart rate by 60 min (p < 0.05) and mean pulmonary artery pressure by 30 min (p < 0.01). Ex vivo studies confirmed the additional effect of combining anti-CD14 with OmCI. In conclusion, upstream inhibition of the key innate immunity molecules, C5 and CD14, is a potential broad-acting treatment regimen in sepsis as it efficiently attenuated inflammation and thrombogenicity and delayed hemodynamic changes.


Infection and Immunity | 2009

Inhibition of Complement and CD14 Attenuates the Escherichia coli-Induced Inflammatory Response in Porcine Whole Blood

Ebbe Billmann Thorgersen; Anne Pharo; Karin Haverson; Anne K. Axelsen; Peter Gaustad; Girish J. Kotwal; Georgia Sfyroera; Tom Eirik Mollnes

ABSTRACT The innate immune response is a double-edged sword in systemic inflammation and sepsis. Uncontrolled or inappropriate activation can damage and be lethal to the host. Several studies have investigated inhibition of downstream mediators, including tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). Emerging evidence indicates that upstream inhibition is a better therapeutic approach for attenuating damaging immune activation. Therefore, we investigated inhibition of two central innate immune pathways, those of complement and CD14/Toll-like receptor 4 (TLR4)/myeloid differentiation protein 2 (MD-2), in a porcine in vitro model of Escherichia coli-induced inflammation. Porcine whole blood anticoagulated with lepuridin, which did not interfere with the complement system, was incubated with E. coli lipopolysaccharide (LPS) or whole bacteria. Inhibitors of complement and CD14 and thus the LPS CD14/TLR4/MD-2 receptor complex were tested to investigate the effect on the inflammatory response. A broad range of inflammatory readouts were used to monitor the effect. Anti-CD14 was found to saturate the CD14 molecule on granulocytes and completely inhibited LPS-induced proinflammatory cytokines in a dose-dependent manner. Anti-CD14 significantly reduced the levels of the E. coli-induced proinflammatory cytokines TNF-α and IL-1β, but not IL-8, in a dose-dependent manner. No effect on bacterial clearance was seen. Vaccinia complement control protein and smallpox inhibitor of complement enzymes, two Orthopoxvirus-encoded complement inhibitors, completely inhibited complement activation. Furthermore, these agents almost completely inhibited the expression of wCD11R3, which is associated with CD18 as a β2 integrin, on porcine granulocytes and decreased IL-8 levels significantly in a dose-dependent manner. As expected, complement inhibition reduced bacterial clearance. We conclude that inhibition of complement and CD14 attenuates E. coli-induced inflammation and might be used as a therapeutic regimen in gram-negative sepsis along with appropriate treatment with antibiotics.


Immunobiology | 2012

Bride and groom in systemic inflammation--the bells ring for complement and Toll in cooperation.

Andreas Barratt-Due; Soeren Erik Pischke; Ole-Lars Brekke; Ebbe Billmann Thorgersen; Erik Waage Nielsen; Terje Espevik; Markus Huber-Lang; Tom Eirik Mollnes

Attenuating the sepsis-induced systemic inflammatory response, with subsequent homeostatic imbalance, has for years been one of the main tasks in sepsis related research. Complement and the TLR family constitute two important upstream sensor and effector-systems of innate immunity. Although they act as partly independent branches of pattern recognition, recent evidence indicate a considerable cross-talk implying that they can either compensate, synergize or antagonize each other. Combined inhibition of these pathways is therefore a particularly interesting approach with a profound anti-inflammatory potential. In previous preclinical studies, we demonstrated that targeting the key molecules C3 or C5 of complement and CD14 of the TLR family had a vast anti-inflammatory effect on Gram-negative bacteria-induced inflammation and sepsis. In this review, we elucidate the significance of these key molecules as important targets for intervention in sepsis and systemic inflammatory response syndrome. Finally, we argue that a combined inhibition of complement and CD14 represent a potential general treatment regimen, beyond the limit of sepsis, including non-infectious systemic inflammation and ischemia reperfusion injury.


Liver Transplantation | 2012

Early bedside detection of ischemia and rejection in liver transplants by microdialysis

Håkon Haugaa; Ebbe Billmann Thorgersen; Anne Pharo; Kirsten Muri Boberg; Aksel Foss; Pål-Dag Line; Truls Sanengen; Runar Almaas; Guro Grindheim; Soeren Erik Pischke; Tom Eirik Mollnes; Tor Inge Tønnessen

This study was performed to explore whether lactate, pyruvate, glucose, and glycerol levels sampled via microdialysis catheters in the transplanted liver could be used to detect ischemia and/or rejection. The metabolites were measured at the bedside every 1 to 2 hours after the operation for a median of 10 days. Twelve grafts with biopsy‐proven rejection and 9 grafts with ischemia were compared to a reference group of 39 grafts with uneventful courses. The median lactate level was significantly higher in both the ischemia group [5.8 mM (interquartile range = 4.0‐11.1 mM)] and the rejection group [2.1 mM (interquartile range = 1.9‐2.4 mM)] versus the reference group [1.5 mM (interquartile range = 1.1‐1.9 mM), P < 0.001 for both]. The median pyruvate level was significantly increased only in the rejection group [185 μM (interquartile range = 155‐206 μM)] versus the reference group [124 μM (interquartile range = 102‐150 μM), P < 0.001], whereas the median lactate/pyruvate ratio and the median glycerol level were increased only in the ischemia group [66.1 (interquartile range = 23.9‐156.7) and 138 μM (interquartile range = 26‐260 μM)] versus the reference group [11.8 (interquartile range = 10.6‐13.6), P < 0.001, and 9 μM (interquartile range = 9‐24 μM), P = 0.002]. Ischemia was detected with 100% sensitivity and greater than 90% specificity when a positive test was repeated after 1 hour. In 3 cases of hepatic artery thrombosis, ischemia was detected despite normal blood lactate levels. Consecutive pathological measurements for 6 hours were used to diagnose rejection with greater than 80% sensitivity and specificity at a median of 4 days before the activity of alanine aminotransferase, the concentration of bilirubin in serum, or both increased. In conclusion, bedside measurements of intrahepatic lactate and pyruvate levels were used to detect ischemia and rejection earlier than current standard methods could. Discrimination from an uneventful patient course was achieved. Consequently, intrahepatic graft monitoring with microdialysis may lead to the earlier initiation of graft‐saving treatment. Liver Transpl, 2012.


Shock | 2009

A new dynamic porcine model of meningococcal shock.

Erik Waage Nielsen; Bernt Christian Hellerud; Ebbe Billmann Thorgersen; Albert Castellheim; Anne Pharo; Julie Katrine Lindstad; Tor Inge Tønnessen; Petter Brandtzaeg; Tom Eirik Mollnes

The objective of this study was to establish a porcine analog of human meningococcal sepsis for pathophysiological investigations and possible future therapy in severe sepsis. Heat-killed Neisseria meningitidis was continuously infused in sublethal concentrations into 10 anesthetized 30-kg pigs (sepsis group). The dose was doubled every 30 min. Six pigs received saline only (control group). The changes described in the succeeding paragraphs were observed in the sepsis group but not in the control group. MAP was aimed to be kept normal by fluid infusion but declined after 3 h in parallel with a decrease in systemic vascular resistance. Pulmonary arterial pressure increased considerably after 30 to 45 min. A massive plasma extravasation was shown by increased hematocrit and a 50% reduction in plasma albumin content. Fluid accumulated in lungs, muscles, and jejunum, as shown by increased wet-dry ratios. Peak inspiratory pressures and fraction of inspired oxygen had to be increased. The cytokines TNF-&agr;, IL-1&bgr;, IL-6, IL-8, IL-10, and IL-12 increased markedly. Neutrophils fell to zero-levels, and platelets were markedly reduced. Thrombin-antithrombin complexes increased notably after 120 min. This is the first large animal model of sepsis using whole Neisseria meningitidis. The model simulates well central aspects of human meningococcal sepsis and could be used for future interventional studies.

Collaboration


Dive into the Ebbe Billmann Thorgersen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anne Pharo

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Lambris

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Kjetil Egge

Oslo University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge