Ebenezer E. Essel
University of Manitoba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ebenezer E. Essel.
Journal of Turbulence | 2015
Ebenezer E. Essel; Ali Nematollahi; Eric W. Thacher; Mark F. Tachie
This paper presents experimental investigation of upstream roughness and Reynolds number effects on the recirculation region over a smooth forward facing step. The upstream rough wall was produced from 1.5 mm sand grains and the Reynolds number based on step height, Reh, was varied from 2040 to 9130 for both the upstream smooth and rough walls. For the smooth wall, the reattachment length increased monotonically with Reh to an asymptotic value of 2.2 step heights for Reh ≥ 6380. Upstream roughness reduced the reattachment length by 44% because of larger momentum deficit and higher turbulence level in the rough wall boundary layer. The mean velocities and Reynolds stresses were also reduced by roughness. The Reynolds shear stress and production of turbulent kinetic energy showed high negative values at the leading edge of the step indicating counter-gradient diffusion. The implications of these results for standard eddy viscosity models are discussed.
Volume 1D, Symposia: Transport Phenomena in Mixing; Turbulent Flows; Urban Fluid Mechanics; Fluid Dynamic Behavior of Complex Particles; Analysis of Elementary Processes in Dispersed Multiphase Flows; Multiphase Flow With Heat/Mass Transfer in Process Technology; Fluid Mechanics of Aircraft and Rocket Emissions and Their Environmental Impacts; High Performance CFD Computation; Performance of Multiphase Flow Systems; Wind Energy; Uncertainty Quantification in Flow Measurements and Simulations | 2014
Yaw Y. Afriyie; Ebenezer E. Essel; Eric W. Thacher; Mark F. Tachie
This paper presents results of an experimental research conducted to study roughness effects downstream of a forward facing step (FFS). A rough surface and a hydraulically smooth surface were used as a rough-FFS and a smooth-FFS, respectively. The upstream condition was kept smooth. Particle image velocimetry (PIV) technique was used for the velocity measurements. The Reynolds number based on the step height (h) and freestream velocity of the approach flow was kept constant at 8685. The results show that the mean reattachment length for the smooth-FFS (SM-SM) is 1.9h. Roughness reduced the peak values of the streamwise mean velocity, Reynolds shear stress and turbulent kinetic energy by 3%, 45% and 16.7% respectively in the recirculation region. In the early redevelopment region, roughness also reduced the peak values of turbulent kinetic energy and the Reynolds shear stress by 41% and 22% respectively.Copyright
Volume 1D, Symposia: Transport Phenomena in Mixing; Turbulent Flows; Urban Fluid Mechanics; Fluid Dynamic Behavior of Complex Particles; Analysis of Elementary Processes in Dispersed Multiphase Flows; Multiphase Flow With Heat/Mass Transfer in Process Technology; Fluid Mechanics of Aircraft and Rocket Emissions and Their Environmental Impacts; High Performance CFD Computation; Performance of Multiphase Flow Systems; Wind Energy; Uncertainty Quantification in Flow Measurements and Simulations | 2014
Ebenezer E. Essel; Eric W. Thacher; Mark F. Tachie
This paper presents an experimental investigation of Reynolds number effects on the characteristics of separated and reattached flow over a smooth forward facing step. Particle image velocimetry technique was used to conduct detailed velocity measurement for a wide range of Reynolds numbers based on the step height and freestream velocity, 2040≤Reh≤8750. For each test case, the aspect ratio, AR = 21, ratio of boundary layer to step height, δ/h = 2.6 ± 0.2 and freestream turbulence level of 4% were kept constant. The results showed that the reattachment length increased monotonically with increasing Reynolds number for Reh < 6000, beyond which the reattachment length was independent of Reynolds number. In the recirculation region on top of the step, the Reynolds normal stresses were independent of Reynolds number but a higher Reynolds number increased the Reynolds shear stress in the region adjacent to the top of the step.Copyright
Volume 1C, Symposia: Fundamental Issues and Perspectives in Fluid Mechanics; Industrial and Environmental Applications of Fluid Mechanics; Issues and Perspectives in Automotive Flows; Gas-Solid Flows: Dedicated to the Memory of Professor Clayton T. Crowe; Numerical Methods for Multiphase Flow; Transport Phenomena in Energy Conversion From Clean and Sustainable Resources; Transport Phenomena in Materials Processing and Manufacturing Processes | 2014
Ebenezer E. Essel; Kathryn M. Atamanchuk; Samuel d’Auteuil; Mark F. Tachie
An experimental study was conducted to investigate low Reynolds number effects on open channel flow over a transverse square rib. Particle image velocimetry technique was used to perform detailed velocity measurement in the upstream and recirculation region of a square rib of height, h = 12 mm. The Reynolds number based on the freestream velocity and rib height, Reh = 1510, 2650 and 3950 and the ratio of the boundary layer thickness to step height, δ/h = 2.5 ± 0.2. The results showed that the reattachment length of Reh = 2650 and 3950 increased by 5.7% compared with corresponding value of Reh = 1510. The mean velocities were independent of Reynolds number in the recirculation region but at the reattachment point, Reh = 3650 reduced the streamwise mean velocity and enhanced the wall-normal mean velocity in the region adjacent to the wall. The turbulent kinetic energy beyond the center of the recirculation region increased with increasing Reynolds number.Copyright
Flow Turbulence and Combustion | 2015
Ebenezer E. Essel; Mark F. Tachie
Experimental Thermal and Fluid Science | 2013
Ebenezer E. Essel; Mark F. Tachie; Martin Agelin-Chaab; Mike Koupriyanov; Brad Tully
AIAA Journal | 2017
Ebenezer E. Essel; Mark F. Tachie
International Journal of Heat and Fluid Flow | 2018
Ebenezer E. Essel; Mark F. Tachie
International Journal of Heat and Fluid Flow | 2017
Ebenezer E. Essel; Mark F. Tachie
International Journal of Heat and Fluid Flow | 2018
Mohammad Shajid Rahman; Godwin F.K. Tay; Ebenezer E. Essel; Mark F. Tachie