Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eberhard Mikusch is active.

Publication


Featured researches published by Eberhard Mikusch.


Applied Optics | 2005

GOME level 1-to-2 data processor version 3.0: a major upgrade of the GOME/ERS-2 total ozone retrieval algorithm

Robert Spurr; Diego Loyola; Werner Thomas; Wolfgang Balzer; Eberhard Mikusch; Bernd Aberle; Sander Slijkhuis; Thomas Ruppert; Michel Van Roozendael; J.-C. Lambert; Trisnanto Soebijanta

The global ozone monitoring experiment (GOME) was launched in April 1995, and the GOME data processor (GDP) retrieval algorithm has processed operational total ozone amounts since July 1995. GDP level 1-to-2 is based on the two-step differential optical absorption spectroscopy (DOAS) approach, involving slant column fitting followed by air mass factor (AMF) conversions to vertical column amounts. We present a major upgrade of this algorithm to version 3.0. GDP 3.0 was implemented in July 2002, and the 9-year GOME data record from July 1995 to December 2004 has been processed using this algorithm. The key component in GDP 3.0 is an iterative approach to AMF calculation, in which AMFs and corresponding vertical column densities are adjusted to reflect the true ozone distribution as represented by the fitted DOAS effective slant column. A neural network ensemble is used to optimize the fast and accurate parametrization of AMFs. We describe results of a recent validation exercise for the operational version of the total ozone algorithm; in particular, seasonal and meridian errors are reduced by a factor of 2. On a global basis, GDP 3.0 ozone total column results lie between -2% and +4% of ground-based values for moderate solar zenith angles lower than 70 degrees. A larger variability of about +5% and -8% is observed for higher solar zenith angles up to 90 degrees.


IEEE Transactions on Geoscience and Remote Sensing | 2009

Data Flow and Workflow Organization—The Data Management for the TerraSAR-X Payload Ground Segment

Meinhard Wolfmüller; Daniele Dietrich; Edgar Sireteanu; Stephan Kiemle; Eberhard Mikusch; Martin Bottcher

The payload ground segment (PGS) for the recently launched German radar satellite, TerraSAR-X, performs the operational data management of the acquired satellite data. This comprises well-known functions such as reception, systematic and on-demand processing, archiving and cataloguing, ordering, and dissemination of digital Earth-observation products. In addition, it comprises new functions like large-scale multimode acquisition ordering by users, integration with a commercial service segment, and new interfaces and workflows within the complete ground segment. The TerraSAR-X PGS is based on the Data Information and Management System (DIMS), the multimission data-handling infrastructure of the German Remote Sensing Data Center (DFD) at the German Aerospace Center. The development and integration of the new functions and complex workflows for TerraSAR-X were achieved and successfully tested on time. After the support of commissioning phase for five months, the system is now operational. As an intended side effect, the PGS for TerraSAR-X is, in several aspects, a pattern being reused for upcoming future missions, thus substantially reducing overall developmental costs. This paper investigates features of the TerraSAR-X PGS that enable the reuse in a multimission environment. It summarizes the achieved enhancements and extensions of DIMS to support the TerraSAR-X mission. Special emphasis is placed on the implementation of the request workflow initiated by user orders and the corresponding data flow within the distributed DFD multimission facility.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2009

The Geospatial Service Infrastructure for DLR's National Remote Sensing Data Library

Torsten Heinen; Stephan Kiemle; B. Buckl; Eberhard Mikusch

This paper describes the motivation, requirements, and challenges of integrating a geospatial infrastructure, based on standardized web services, into an earth observation (EO) data library. The design of harmonized data and information models of the EO and geospatial community is a precondition for interoperability at metadata, data and semantic levels. A major challenge arises from raising the awareness that interoperability is essential for an interdisciplinary use of EO data in Geographic Information System (GIS) and value-adding services.


IEEE Geoscience and Remote Sensing Magazine | 2016

Big Data Management in Earth Observation: The German satellite data archive at the German Aerospace Center

Stephan Kiemle; Katrin Molch; Stephan Schropp; Nicolas Weiland; Eberhard Mikusch

The German Satellite Data Archive (D-SDA) at the German Aerospace Center (DLR) has been managing largevolume Earth-observation (EO) data in the context of EOmission payload ground segments (PGSs) for more than two decades. Hardware, data management, processing, user access, long-term preservation, and data exploitation expertise are under one roof and interact closely. Upcoming EO-mission PGSs benefit as much from the comprehensive expertise, close interaction, and integrated infrastructure as do in-house scientific application projects requiring access, processing, and archiving of large-volume EO data. Using a number of examples, we will demonstrate how EO data life cycles benefit from the proximity of data management and application scientists and from the extensive operational experience gathered over time.


Archive | 2014

Big data management in Earth Observation: the German Satellite Data Archive at DLR

Stephan Kiemle; Katrin Molch; Stephan Schropp; Nicolas Weiland; Eberhard Mikusch

This paper presents a Near-Real-Time multi-GPU accelerated solution of the ωk Algorithm for Synthetic Aperture Radar (SAR) data focusing, obtained in Stripmap SAR mode. Starting from an input raw data, the algorithm subdivides it in a grid of a configurable number of bursts along track. A multithreading CPU-side support is made available in order to handle each graphic device in parallel. Then each burst is assigned to a separate GPU and processed including Range Compression, Stolt Mapping via ChirpZ and Azimuth Compression steps. We prove the efficiency of our algorithm by using Sentinel-1 raw data (approx. 3.3 GB) on a commodity graphics card; the single-GPU solution is approximately 4x faster than the industrial multi-core CPU implementation (General ACS SAR Processor, GASP), without significant loss of quality. Using a multi-GPU system, the algorithm is approximately 6x faster with respect to the CPU processor.For decades, field help in case of disasters on the Earth’s surface - like floods, fires or earthquakes - is supported by the analysis of remotely sensed data. In recent years, the monitoring of vehicles, buildings or areas fraught with risk has become another major task for satellite-based crisis intervention. Since these scenarios are unforeseen and time-critical, they require a fast and well coordinated reaction. If useful information is extracted out of image data in realtime directly on board a spacecraft, the timespan between image acquisition and an appropriate reaction can be shortened significantly. Furthermore, on board image analysis allows data of minor interest, e.g. cloud-contaminated scenes, to be discarded and/or treated with lower priority, which leads to an optimized usage of storage and downlink capacity. This paper describes the modular application framework of VIMOS, an on board image processing experiment for remote sensing applications. Special focus will be on resource management, safety and modular commandability.Gaia is an ESA cornerstone mission, which was successfully launched December 2013 and commenced operations in July 2014. Within the Gaia Data Processing and Analysis consortium, Coordination Unit 7 (CU7) is responsible for the variability analysis of over a billion celestial sources and nearly 4 billion associated time series (photometric, spectrophotometric, and spectroscopic), encoding information in over 800 billion observations during the 5 years of the mission, resulting in a petabyte scale analytical problem. In this article, we briefly describe the solutions we developed to address the challenges of time series variability analysis: from the structure for a distributed data-oriented scientific collaboration to architectural choices and specific components used. Our approach is based on Open Source components with a distributed, partitioned database as the core to handle incrementally: ingestion, distributed processing, analysis, results and export in a constrained time window.The seamless mosaicing of massive very high resolution imagery addresses several aspects related to big data from space. Data volume is directly proportional to the size the input data, i.e., order of several TeraPixels for a continent. Data velocity derives from the fact that the input data is delivered over several years to meet maximum cloud contamination constraints with the considered satellites. Data variety results from the need to collect and integrate various ancillary data for cloud detection, land/sea mask delineation, and adaptive colour balancing. This paper details how these 3 aspects of big data are handled and illustrates them for the creation of a seamless pan-European mosaic from 2.5m imagery (Land Monitoring/Urban Atlas Copernicus CORE 03 data set).The current development of satellite imagery means that a great volume of images acquired globally has to be understood in a fast and precise manner. Processing this large quantity of information comes at the cost of finding unsupervised algorithms to fulfill these tasks. Change detection is one of the main issues when talking about the analysis of satellite image time series (SITS). In this paper, we propose a method to analyze changes in SITS based on binary descriptors and on the Hamming distance, regarded as a similarity metric. In order to render an automatic and completely unsupervised technique towards solving this problem, the obtained distances are quantized into change levels using the Lloyd-Max’s algorithm. The experiments are carried on 11 Landsat images at 30 meters spatial resolution, covering an area of approximately 59 × 51 km2 over the surroundings of Bucharest, Romania, and containing information from six subbands of frequency.The Euclid Archive System prototype is a functional information system which is used to address the numerous challenges in the development of fully functional data processing system for Euclid. The prototype must support the highly distributed nature of the Euclid Science Ground System, with Science Data Centres in at least eight countries. There are strict requirements both on data quality control and traceability of the data processing. Data volumes will be greater than 10 Pbyte, with the actual volume being dependent on the amount of reprocessing required.In the space domain, all scientific and technological developments are accompanied by a growth of the number of data sources. More specifically, the world of observation knows this very strong acceleration and the demand for information processing follows the same pace. To meet this demand, the problems associated with non-interoperability of data must be efficiently resolved upstream and without loss of information. We advocate the use of linked data technologies to integrate heterogeneous and schema-less data that we aim to publish in the 5 stars scale in order to foster their re-use. By proposing the 5 stars data model, Tim Berners-Lee drew the perfect roadmap for the production of high quality linked data. In this paper, we present a technological framework that allows to go from raw, scattered and heterogeneous data to structured data with a well-defined and agreed upon semantics, interlinked with other dataset for their common objects.Reference data sets, necessary to the advancement of the field of object recognition by providing a point of comparison for different algorithms, are prevalent in the field of multimedia. Although sharing the same basic object recognition problem, in the field of remote sensing there is a need for specialized reference data sets. This paper would like to open the topic for discussion, by taking a first attempt at creating a reference data set for a satellite image. In doing so, important differences between annotating photographic and satellite images are highlighted, along with their impact on the creation of a reference data set. The results are discussed with a view toward creating a future methodology for the manual annotation of satellite images.The future atmospheric composition Sentinel missions will generate two orders of magnitude more data than the current missions and the operational processing of these big data is a big challenge. The trace gas retrieval from remote sensing data usually requires high-performance radiative transfer model (RTM) simulations and the RTM are usually the bottleneck for the operational processing of the satellite data. To date, multi-core CPUs and also Graphical Processing Units (GPUs) have been used for highly intensive parallel computations. In this paper, we are comparing multi-core and GPU implementations of an RTM based on the discrete ordinate solution method. With GPUs, we have achieved a 20x-40x speed-up for the multi-stream RTM, and 50x speed-up for the two-stream RTM with respect to the original single-threaded CPU codes. Based on these performance tests, an optimal workload distribution scheme between GPU and CPU is proposed. Finally, we discuss the performance obtained with the multi-core-CPU and GPU implementations of the RTM.The effective use of Big Data in current and future scientific missions requires intelligent data handling systems which are able to interface the user to complicated distributed data collections. We review the WISE Concept of Scientific Information Systems and the WISE solutions for the storage and processing as applied to Big Data.Interactive visual data mining, where the user plays a key role in learning process, has gained high attention in data mining and human-machine communication. However, this approach needs Dimensionality Reduction (DR) techniques to visualize image collections. Although the main focus of DR techniques lays on preserving the structure of the data, the occlusion of images and inefficient usage of display space are their two main drawbacks. In this work, we propose to use Non-negative Matrix Factorization (NMF) to reduce the dimensionality of images for immersive visualization. The proposed method aims to preserve the structure of data and at the same time reduce the occlusion between images by defining regularization terms for NMF. Experimental validations performed on two sets of image collections show the efficiency of the proposed method in respect to controlling the trade-off between structure preserving and less occluded visualization.This article provides a short overview about the TanDEM-X mission, its objectives and the payload ground segment (PGS) based on data management, processing systems and long term archive. Due to the large data volume of the acquired and processed products a main challenge in the operation of the PGS is to handle the required data throughput, which is a new dimension for the DLR PGS. To achieve this requirement, several solutions were developed and coordinated. Some of them were more technical nature whereas others optimized the workflows.Clustering of Earth Observation (EO) images has gained a high amount of attention in remote sensing and data mining. Here, each image is represented by a high-dimensional feature vector which could be computed as the results of coding algorithms of extracted local descriptors or raw pixel values. In this work, we propose to learn the features using discriminative Nonnegative Matrix factorization (DNMF) to represent each image. Here, we use the label of some images to produce new representation of images with more discriminative property. To validate our algorithm, we apply the proposed algorithm on a dataset of Synthetic Aperture Radar (SAR) and compare the results with the results of state-of-the-art techniques for image representation. The results confirm the capability of the proposed method in learning discriminative features leading to higher accuracy in clustering.


Archive | 2014

The TanDEM-X Mission - Towards a Global Digital Elevation Model: Four Years of Experience in Large Volume Data Management

Sven Kröger; Silke Kerkhoff; Stephan Kiemle; Stephan Schropp; Maximilian Schwinger; Max Wegner; Eberhard Mikusch

This paper presents a Near-Real-Time multi-GPU accelerated solution of the ωk Algorithm for Synthetic Aperture Radar (SAR) data focusing, obtained in Stripmap SAR mode. Starting from an input raw data, the algorithm subdivides it in a grid of a configurable number of bursts along track. A multithreading CPU-side support is made available in order to handle each graphic device in parallel. Then each burst is assigned to a separate GPU and processed including Range Compression, Stolt Mapping via ChirpZ and Azimuth Compression steps. We prove the efficiency of our algorithm by using Sentinel-1 raw data (approx. 3.3 GB) on a commodity graphics card; the single-GPU solution is approximately 4x faster than the industrial multi-core CPU implementation (General ACS SAR Processor, GASP), without significant loss of quality. Using a multi-GPU system, the algorithm is approximately 6x faster with respect to the CPU processor.For decades, field help in case of disasters on the Earth’s surface - like floods, fires or earthquakes - is supported by the analysis of remotely sensed data. In recent years, the monitoring of vehicles, buildings or areas fraught with risk has become another major task for satellite-based crisis intervention. Since these scenarios are unforeseen and time-critical, they require a fast and well coordinated reaction. If useful information is extracted out of image data in realtime directly on board a spacecraft, the timespan between image acquisition and an appropriate reaction can be shortened significantly. Furthermore, on board image analysis allows data of minor interest, e.g. cloud-contaminated scenes, to be discarded and/or treated with lower priority, which leads to an optimized usage of storage and downlink capacity. This paper describes the modular application framework of VIMOS, an on board image processing experiment for remote sensing applications. Special focus will be on resource management, safety and modular commandability.Gaia is an ESA cornerstone mission, which was successfully launched December 2013 and commenced operations in July 2014. Within the Gaia Data Processing and Analysis consortium, Coordination Unit 7 (CU7) is responsible for the variability analysis of over a billion celestial sources and nearly 4 billion associated time series (photometric, spectrophotometric, and spectroscopic), encoding information in over 800 billion observations during the 5 years of the mission, resulting in a petabyte scale analytical problem. In this article, we briefly describe the solutions we developed to address the challenges of time series variability analysis: from the structure for a distributed data-oriented scientific collaboration to architectural choices and specific components used. Our approach is based on Open Source components with a distributed, partitioned database as the core to handle incrementally: ingestion, distributed processing, analysis, results and export in a constrained time window.The seamless mosaicing of massive very high resolution imagery addresses several aspects related to big data from space. Data volume is directly proportional to the size the input data, i.e., order of several TeraPixels for a continent. Data velocity derives from the fact that the input data is delivered over several years to meet maximum cloud contamination constraints with the considered satellites. Data variety results from the need to collect and integrate various ancillary data for cloud detection, land/sea mask delineation, and adaptive colour balancing. This paper details how these 3 aspects of big data are handled and illustrates them for the creation of a seamless pan-European mosaic from 2.5m imagery (Land Monitoring/Urban Atlas Copernicus CORE 03 data set).The current development of satellite imagery means that a great volume of images acquired globally has to be understood in a fast and precise manner. Processing this large quantity of information comes at the cost of finding unsupervised algorithms to fulfill these tasks. Change detection is one of the main issues when talking about the analysis of satellite image time series (SITS). In this paper, we propose a method to analyze changes in SITS based on binary descriptors and on the Hamming distance, regarded as a similarity metric. In order to render an automatic and completely unsupervised technique towards solving this problem, the obtained distances are quantized into change levels using the Lloyd-Max’s algorithm. The experiments are carried on 11 Landsat images at 30 meters spatial resolution, covering an area of approximately 59 × 51 km2 over the surroundings of Bucharest, Romania, and containing information from six subbands of frequency.The Euclid Archive System prototype is a functional information system which is used to address the numerous challenges in the development of fully functional data processing system for Euclid. The prototype must support the highly distributed nature of the Euclid Science Ground System, with Science Data Centres in at least eight countries. There are strict requirements both on data quality control and traceability of the data processing. Data volumes will be greater than 10 Pbyte, with the actual volume being dependent on the amount of reprocessing required.In the space domain, all scientific and technological developments are accompanied by a growth of the number of data sources. More specifically, the world of observation knows this very strong acceleration and the demand for information processing follows the same pace. To meet this demand, the problems associated with non-interoperability of data must be efficiently resolved upstream and without loss of information. We advocate the use of linked data technologies to integrate heterogeneous and schema-less data that we aim to publish in the 5 stars scale in order to foster their re-use. By proposing the 5 stars data model, Tim Berners-Lee drew the perfect roadmap for the production of high quality linked data. In this paper, we present a technological framework that allows to go from raw, scattered and heterogeneous data to structured data with a well-defined and agreed upon semantics, interlinked with other dataset for their common objects.Reference data sets, necessary to the advancement of the field of object recognition by providing a point of comparison for different algorithms, are prevalent in the field of multimedia. Although sharing the same basic object recognition problem, in the field of remote sensing there is a need for specialized reference data sets. This paper would like to open the topic for discussion, by taking a first attempt at creating a reference data set for a satellite image. In doing so, important differences between annotating photographic and satellite images are highlighted, along with their impact on the creation of a reference data set. The results are discussed with a view toward creating a future methodology for the manual annotation of satellite images.The future atmospheric composition Sentinel missions will generate two orders of magnitude more data than the current missions and the operational processing of these big data is a big challenge. The trace gas retrieval from remote sensing data usually requires high-performance radiative transfer model (RTM) simulations and the RTM are usually the bottleneck for the operational processing of the satellite data. To date, multi-core CPUs and also Graphical Processing Units (GPUs) have been used for highly intensive parallel computations. In this paper, we are comparing multi-core and GPU implementations of an RTM based on the discrete ordinate solution method. With GPUs, we have achieved a 20x-40x speed-up for the multi-stream RTM, and 50x speed-up for the two-stream RTM with respect to the original single-threaded CPU codes. Based on these performance tests, an optimal workload distribution scheme between GPU and CPU is proposed. Finally, we discuss the performance obtained with the multi-core-CPU and GPU implementations of the RTM.The effective use of Big Data in current and future scientific missions requires intelligent data handling systems which are able to interface the user to complicated distributed data collections. We review the WISE Concept of Scientific Information Systems and the WISE solutions for the storage and processing as applied to Big Data.Interactive visual data mining, where the user plays a key role in learning process, has gained high attention in data mining and human-machine communication. However, this approach needs Dimensionality Reduction (DR) techniques to visualize image collections. Although the main focus of DR techniques lays on preserving the structure of the data, the occlusion of images and inefficient usage of display space are their two main drawbacks. In this work, we propose to use Non-negative Matrix Factorization (NMF) to reduce the dimensionality of images for immersive visualization. The proposed method aims to preserve the structure of data and at the same time reduce the occlusion between images by defining regularization terms for NMF. Experimental validations performed on two sets of image collections show the efficiency of the proposed method in respect to controlling the trade-off between structure preserving and less occluded visualization.This article provides a short overview about the TanDEM-X mission, its objectives and the payload ground segment (PGS) based on data management, processing systems and long term archive. Due to the large data volume of the acquired and processed products a main challenge in the operation of the PGS is to handle the required data throughput, which is a new dimension for the DLR PGS. To achieve this requirement, several solutions were developed and coordinated. Some of them were more technical nature whereas others optimized the workflows.Clustering of Earth Observation (EO) images has gained a high amount of attention in remote sensing and data mining. Here, each image is represented by a high-dimensional feature vector which could be computed as the results of coding algorithms of extracted local descriptors or raw pixel values. In this work, we propose to learn the features using discriminative Nonnegative Matrix factorization (DNMF) to represent each image. Here, we use the label of some images to produce new representation of images with more discriminative property. To validate our algorithm, we apply the proposed algorithm on a dataset of Synthetic Aperture Radar (SAR) and compare the results with the results of state-of-the-art techniques for image representation. The results confirm the capability of the proposed method in learning discriminative features leading to higher accuracy in clustering.


international geoscience and remote sensing symposium | 2012

User needs and requirements impacting the long term preservation of earth observation data

Katrin Molch; Rosemarie Leone; Mirko Albani; Eberhard Mikusch

Within the past 40 years a large number of unique Earth observation datasets have been acquired and archived by space agencies and other Earth observation data producers worldwide. These time series, and in particular those based on radiometrically similar sensors, constitute a valuable humankind asset. They allow for the first time to perform long-term analyses of environmental phenomena based on Earth observation. However, in order for the data to be useful now and for future generations, archive owners, in addition to sustainable funding, need specific and precise requirements from data users in order to design and operate archives which serve well current and future generations of users.


Natural Hazards and Earth System Sciences | 2010

Tsunami early warning and decision support

Tilmann Steinmetz; Ulrich Raape; Sven Teßmann; Christian Strobl; Monika Friedemann; Thomas Kukofka; Torsten Riedlinger; Eberhard Mikusch; Stefan Dech


Archive | 2000

Data Information and Management System for the Production, Archiving and Distribution of Earth Observation Products

Eberhard Mikusch; Erhard Diedrich; Markus Göhmann; Stephan Kiemle; Christoph Reck; Ralf Reißig; Kurt Schmidt; Wilhelm Wildegger; Meinhard Wolfmüller


ERS symposium on space at the service of our environment | 1997

Ground segment for ERS-2 GOME sensor at the German D-PAF

Diego Loyola; Wolfgang Balzer; Bernd Aberle; Michael Bittner; K. Kretschel; Eberhard Mikusch; H. Mühle; Thomas Ruppert; Cornelia Schmid; Sander Slijkhuis; Robert Spurr; Werner Thomas; Thomas Wieland; M. Wolfmüller

Collaboration


Dive into the Eberhard Mikusch's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan Dech

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar

Bernd Aberle

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar

Diego Loyola

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar

Katrin Molch

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge