Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ebrahim Afshinnekoo is active.

Publication


Featured researches published by Ebrahim Afshinnekoo.


Cell systems | 2015

Geospatial Resolution of Human and Bacterial Diversity with City-Scale Metagenomics

Ebrahim Afshinnekoo; Cem Meydan; Shanin Chowdhury; Dyala Jaroudi; Collin Boyer; Nick Bernstein; Julia M. Maritz; Darryl Reeves; Jorge Gandara; Sagar Chhangawala; Sofia Ahsanuddin; Amber Simmons; Timothy Nessel; Bharathi Sundaresh; Elizabeth Pereira; Ellen Jorgensen; Sergios-Orestis Kolokotronis; Nell Kirchberger; Isaac Garcia; David Gandara; Sean Dhanraj; Tanzina Nawrin; Yogesh Saletore; Noah Alexander; Priyanka Vijay; Elizabeth M. Hénaff; Paul Zumbo; Michael Walsh; Gregory D. O'Mullan; Scott Tighe

SUMMARY The panoply of microorganisms and other species present in our environment influence human health and disease, especially in cities, but have not been profiled with metagenomics at a city-wide scale. We sequenced DNA from surfaces across the entire New York City (NYC) subway system, the Gowanus Canal, and public parks. Nearly half of the DNA (48%) does not match any known organism; identified organisms spanned 1,688 bacterial, viral, archaeal, and eukaryotic taxa, which were enriched for harmless genera associated with skin (e.g., Acinetobacter). Predicted ancestry of human DNA left on subway surfaces can recapitulate U.S. Census demographic data, and bacterial signatures can reveal a station’s history, such as marine-associated bacteria in a hurricane-flooded station. Some evidence of pathogens was found (Bacillus anthracis), but a lack of reported cases in NYC suggests that the pathogens represent a normal, urban microbiome. This baseline metagenomic map of NYC could help long-term disease surveillance, bioterrorism threat mitigation, and health management in the built environment of cities.


Nature Communications | 2016

Genome assembly and geospatial phylogenomics of the bed bug Cimex lectularius.

Jeffrey A. Rosenfeld; Darryl Reeves; Mercer R. Brugler; Apurva Narechania; Sabrina Simon; Russell Durrett; Jonathan Foox; Michael C. Schatz; Jorge Gandara; Ebrahim Afshinnekoo; Ernest T. Lam; Alex Hastie; Saki Chan; Michael Saghbini; Alex Kentsis; Paul J. Planet; Vladyslav Kholodovych; Michael Tessler; Richard H. Baker; Rob DeSalle; Louis N. Sorkin; Sergios-Orestis Kolokotronis; Mark E. Siddall; George Amato; Christopher E. Mason

The common bed bug (Cimex lectularius) has been a persistent pest of humans for thousands of years, yet the genetic basis of the bed bugs basic biology and adaptation to dense human environments is largely unknown. Here we report the assembly, annotation and phylogenetic mapping of the 697.9-Mb Cimex lectularius genome, with an N50 of 971 kb, using both long and short read technologies. A RNA-seq time course across all five developmental stages and male and female adults generated 36,985 coding and noncoding gene models. The most pronounced change in gene expression during the life cycle occurs after feeding on human blood and included genes from the Wolbachia endosymbiont, which shows a simultaneous and coordinated host/commensal response to haematophagous activity. These data provide a rich genetic resource for mapping activity and density of C. lectularius across human hosts and cities, which can help track, manage and control bed bug infestations.


Genome Biology | 2017

Comprehensive benchmarking and ensemble approaches for metagenomic classifiers

Alexa B. R. McIntyre; Rachid Ounit; Ebrahim Afshinnekoo; Robert J. Prill; Elizabeth M. Hénaff; Noah Alexander; Samuel S Minot; David Danko; Jonathan Foox; Sofia Ahsanuddin; Scott Tighe; Nur A. Hasan; Poorani Subramanian; Kelly Moffat; Shawn Levy; Stefano Lonardi; Nick Greenfield; Rita R. Colwell; Gail Rosen; Christopher E. Mason

BackgroundOne of the main challenges in metagenomics is the identification of microorganisms in clinical and environmental samples. While an extensive and heterogeneous set of computational tools is available to classify microorganisms using whole-genome shotgun sequencing data, comprehensive comparisons of these methods are limited.ResultsIn this study, we use the largest-to-date set of laboratory-generated and simulated controls across 846 species to evaluate the performance of 11 metagenomic classifiers. Tools were characterized on the basis of their ability to identify taxa at the genus, species, and strain levels, quantify relative abundances of taxa, and classify individual reads to the species level. Strikingly, the number of species identified by the 11 tools can differ by over three orders of magnitude on the same datasets. Various strategies can ameliorate taxonomic misclassification, including abundance filtering, ensemble approaches, and tool intersection. Nevertheless, these strategies were often insufficient to completely eliminate false positives from environmental samples, which are especially important where they concern medically relevant species. Overall, pairing tools with different classification strategies (k-mer, alignment, marker) can combine their respective advantages.ConclusionsThis study provides positive and negative controls, titrated standards, and a guide for selecting tools for metagenomic analyses by comparing ranges of precision, accuracy, and recall. We show that proper experimental design and analysis parameters can reduce false positives, provide greater resolution of species in complex metagenomic samples, and improve the interpretation of results.


Journal of biomolecular techniques | 2017

International Standards for Genomes, Transcriptomes, and Metagenomes

Christopher E. Mason; Ebrahim Afshinnekoo; Scott Tighe; Shixiu Wu; Shawn Levy

Challenges and biases in preparing, characterizing, and sequencing DNA and RNA can have significant impacts on research in genomics across all kingdoms of life, including experiments in single-cells, RNA profiling, and metagenomics (across multiple genomes). Technical artifacts and contamination can arise at each point of sample manipulation, extraction, sequencing, and analysis. Thus, the measurement and benchmarking of these potential sources of error are of paramount importance as next-generation sequencing (NGS) projects become more global and ubiquitous. Fortunately, a variety of methods, standards, and technologies have recently emerged that improve measurements in genomics and sequencing, from the initial input material to the computational pipelines that process and annotate the data. Here we review current standards and their applications in genomics, including whole genomes, transcriptomes, mixed genomic samples (metagenomes), and the modified bases within each (epigenomes and epitranscriptomes). These standards, tools, and metrics are critical for quantifying the accuracy of NGS methods, which will be essential for robust approaches in clinical genomics and precision medicine.


Cell systems | 2015

Modern Methods for Delineating Metagenomic Complexity

Ebrahim Afshinnekoo; Cem Meydan; Shanin Chowdhury; Dyala Jaroudi; Collin Boyer; Nick Bernstein; Julia M. Maritz; Darryl Reeves; Jorge Gandara; Sagar Chhangawala; Sofia Ahsanuddin; Amber Simmons; Timothy Nessel; Bharathi Sundaresh; Elizabeth Pereira; Ellen Jorgensen; Sergios-Orestis Kolokotronis; Nell Kirchberger; Isaac Garcia; David Gandara; Sean Dhanraj; Tanzina Nawrin; Yogesh Saletore; Noah Alexander; Priyanka Vijay; Elizabeth M. Hénaff; Paul Zumbo; Michael Walsh; Gregory D. O’Mullan; Scott Tighe

We appreciate the comments of Ackelsberg et al. (Ackelsberg et al., 2015xAckelsberg, J., Rakeman, J., Hughes, S., Peterson, J., Mead, P., Schriefer, M., Kingry, L., Hoffmaster, A., and Gee, J. Cell Syst. 2015; 1: 4–5Abstract | Full Text | Full Text PDF | Scopus (1)See all ReferencesAckelsberg et al., 2015) and have decided to revise the paper (Afshinnekoo et al., 2015xAfshinnekoo, E., Meydan, C., Chowdhury, S., Jaroudi, D., Boyer, C., Bernstein, N., Maritz, J.M., Reeves, D., Gandara, J., Chhangawala, S. et al. Cell Syst. 2015; 1: 72–87Abstract | Full Text | Full Text PDF | Scopus (23)See all ReferencesAfshinnekoo et al., 2015) as follows:Figure 3B has been corrected to show the general coverage of the Yersinia pestis pMT1 plasmid, but not the murine toxin gene (yMT). The initial claim of “…consistent 20× coverage across the murine toxin gene…” was erroneously based on looking at annotations from related plasmids and comparing different reference sequences. In actuality no reads mapped to the yMT gene.The result of low coverage to the Bacillus anthracis plasmids (pXO1 and pXO2) and no evidence of plcR SNP—an often defining feature of anthrax—is now reported in the Results section.The language in the Summary, Results, and Discussion has been revised, and speculative text about pathogenic organisms has been deleted. We now state that although all our metagenomic analysis tools identified reads with similarity to B. anthracis and Y. pestis sequences, there is minimal coverage to the backbone genome of these organisms, and there is no strong evidence to suggest these organisms are in fact present and no evidence of pathogenicity.Furthermore, in regards to the concerns of the culture methods we have posted subsequent details on the study website (http://www.pathomap.org/2015/04/13/culture-methods/) and below.A second culture experiment was performed to address the question of antibiotic resistance (Afshinnekoo et al., 2015xAfshinnekoo, E., Meydan, C., Chowdhury, S., Jaroudi, D., Boyer, C., Bernstein, N., Maritz, J.M., Reeves, D., Gandara, J., Chhangawala, S. et al. Cell Syst. 2015; 1: 72–87Abstract | Full Text | Full Text PDF | Scopus (23)See all ReferencesAfshinnekoo et al., 2015, Figure 4A). Bacteria were cultured in LB agar and then spread onto LB plates, after lawn growth, single colonies were picked and then plated onto antibiotic plates (kanamycin – 50 ug/ml, chloramphenicol – 35 ug/ml, and ampicillin – 100 ug/ml) and growth was assessed. Plates were incubated at 37°C. As a control, air samples were taken and cultured at every location. In all cases, these did not yield growth. The non-selective plate done last when replica plating also serves as a control. There was no quantitative confirmation of bacterial versus non-bacterial organisms, although there was no observable fungal growth in the samples. Further experiments are being done to dive deeper into the question of viability of microorganisms on the subway system as well as the presence of antibiotic-resistant bacteria.The field of metagenomics is relatively new but has great potential to serve an incredibly important role both in our understanding of the world around us—with key applications in the built environment—as well as the clinical realm. Nevertheless, there are still major hurdles and challenges that the field faces in order to realize this potential. We welcome and appreciate the discussion (http://microbe.net/2015/02/17/the-long-road-from-data-to-wisdom-and-from-dna-to-pathogen/) prompted by our study, and we anticipate that this large dataset will enable further experimentation, additional testing of taxonomic tools, and hopefully help in developing methodologies for metagenomic analysis.


Experimental Hematology | 2017

Genetic and epigenetic heterogeneity and the impact on cancer relapse

Ciaran Hassan; Ebrahim Afshinnekoo; Sheng Li; Shixiu Wu; Christopher E. Mason

Acute myeloid leukemia (AML) is an aggressive hematopoietic malignancy with an exceedingly poor prognosis: a 5-year overall survival rate of 40%-45% in the young and a 5-year survival rate of less than 10% in the elderly (>60 years of age). Although a high percentage of patients enters complete remission after chemotherapeutic intervention, the majority of patients relapse within 3 years. Such stark prognostic outcomes highlight the need for additional clinical research, basic discovery, and molecular delineation of the etiologies and mechanisms behind responses to therapy that lead to relapse. Here, we summarize recent discoveries in tumor heterogeneity at the genetic and epigenetic levels and their independent molecular trajectories and dynamics in response to therapy. These new discoveries may have significant implications for understanding, monitoring, and treating leukemia and other cancers.


Mbio | 2017

Metagenomic characterization of ambulances across the USA

Niamh B. O’Hara; Harry J. Reed; Ebrahim Afshinnekoo; Donell Harvin; Nora Caplan; Gail Rosen; Brook Frye; Stephen Woloszynek; Rachid Ounit; Shawn Levy; Erin Butler; Christopher E. Mason

BackgroundMicrobial communities in our built environments have great influence on human health and disease. A variety of built environments have been characterized using a metagenomics-based approach, including some healthcare settings. However, there has been no study to date that has used this approach in pre-hospital settings, such as ambulances, an important first point-of-contact between patients and hospitals.ResultsWe sequenced 398 samples from 137 ambulances across the USA using shotgun sequencing. We analyzed these data to explore the microbial ecology of ambulances including characterizing microbial community composition, nosocomial pathogens, patterns of diversity, presence of functional pathways and antimicrobial resistance, and potential spatial and environmental factors that may contribute to community composition.We found that the top 10 most abundant species are either common built environment microbes, microbes associated with the human microbiome (e.g., skin), or are species associated with nosocomial infections. We also found widespread evidence of antimicrobial resistance markers (hits ~ 90% samples). We identified six factors that may influence the microbial ecology of ambulances including ambulance surfaces, geographical-related factors (including region, longitude, and latitude), and weather-related factors (including temperature and precipitation).ConclusionsWhile the vast majority of microbial species classified were beneficial, we also found widespread evidence of species associated with nosocomial infections and antimicrobial resistance markers. This study indicates that metagenomics may be useful to characterize the microbial ecology of pre-hospital ambulance settings and that more rigorous testing and cleaning of ambulances may be warranted.


bioRxiv | 2018

Ozone Treatment for Elimination of Bacteria in Medical Environments

Craig Westover; Savljaton Rahmatulloev; David Danko; Niamh B. O'Hara; Rachid Ounit; Daniela Bezdan; Ebrahim Afshinnekoo; Christopher E. Mason

Pathogenic bacteria and viruses in medical environments can lead to treatment complications and hospital-acquired infections (HAIs), and current cleaning protocols do not address hard-to-access areas or that may be beyond line-of-sight treatment such as with ultraviolet radiation. At the time of writing, the ongoing pandemic of the novel coronavirus known as novel coronavirus (2019-nCoV) has claimed over 4 million cases worldwide and is expected to have multiple peaks, with possible resurgences throughout 2020. It is therefore imperative that disinfection methods in the meantime be employed to keep up with the supply of personal protective equipment (PPE) and sterilize a wide array of surfaces as quarantine lockdowns begin to be lifted. Here, we tested the efficacy of Sani Sport ozone devices as a means to treat hospital equipment and surfaces for killing bacteria, degrading synthetic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA, and RNA from non-replicative capsid enclosed SARS-CoV-2. We observed a rapid killing of medically-relevant and environmental bacteria (Escherichia coli, Enterococcus faecalis, Bacillus subtlis, and Deinococcus radiodurans) across four surfaces (blankets, catheter, remotes, and syringes) within 30 minutes, and up to a 99% reduction in viable bacteria at the end of 2-hour treatment cycles. Significant RNA degradation of synthetic SARS-CoV-2 RNA was seen an hour into the ozone treatment as compared to non-treated controls and a non-replicative form of the virus was shown to have significant RNA degradation at 30 minutes compared to a no treatment control and RNA degradation could be reliably detected at 10,000 and 1,000 copies of virus per sample. These results show the strong promise of ozone treatment for reducing risk of infection and HAIs.


Gates Open Research | 2018

The Microbe Directory: An annotated, searchable inventory of microbes’ characteristics

Heba Shaaban; David A. Westfall; Rawhi Mohammad; David Danko; Daniela Bezdan; Ebrahim Afshinnekoo; Nicola Segata; Christopher E. Mason

The Microbe Directory is a collective research effort to profile and annotate more than 7,500 unique microbial species from the MetaPhlAn2 database that includes bacteria, archaea, viruses, fungi, and protozoa. By collecting and summarizing data on various microbes’ characteristics, the project comprises a database that can be used downstream of large-scale metagenomic taxonomic analyses, allowing one to interpret and explore their taxonomic classifications to have a deeper understanding of the microbial ecosystem they are studying. Such characteristics include, but are not limited to: optimal pH, optimal temperature, Gram stain, biofilm-formation, spore-formation, antimicrobial resistance, and COGEM class risk rating. The database has been manually curated by trained student-researchers from Weill Cornell Medicine and CUNY—Hunter College, and its analysis remains an ongoing effort with open-source capabilities so others can contribute. Available in SQL, JSON, and CSV (i.e. Excel) formats, the Microbe Directory can be queried for the aforementioned parameters by a microorganism’s taxonomy. In addition to the raw database, The Microbe Directory has an online counterpart ( https://microbe.directory/) that provides a user-friendly interface for storage, retrieval, and analysis into which other microbial database projects could be incorporated. The Microbe Directory was primarily designed to serve as a resource for researchers conducting metagenomic analyses, but its online web interface should also prove useful to any individual who wishes to learn more about any particular microbe.


Scientific Reports | 2017

Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing

Michael Tessler; Johannes S. Neumann; Ebrahim Afshinnekoo; Michael Pineda; Rebecca Hersch; Luiz Felipe Machado Velho; Bianca Trevizan Segovia; Fábio Amodêo Lansac-Tôha; Michael J. Lemke; Rob DeSalle; Christopher E. Mason; Mercer R. Brugler

Collaboration


Dive into the Ebrahim Afshinnekoo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge