Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eckhard Ficker is active.

Publication


Featured researches published by Eckhard Ficker.


Circulation Research | 2003

Role of the Cytosolic Chaperones Hsp70 and Hsp90 in Maturation of the Cardiac Potassium Channel hERG

Eckhard Ficker; Adrienne T. Dennis; Lu Wang; Arthur M. Brown

Abstract— The human ether-a-gogo–related gene (hERG) encodes the &agr; subunit of the cardiac potassium current IKr. Several mutations in hERG produce trafficking-deficient channels that may cause hereditary long-QT syndrome and sudden cardiac death. Although hERG currents have been studied extensively, little is known about the proteins involved in maturation and trafficking of hERG. Using immunoprecipitations, we show that the cytosolic chaperones heat shock protein (Hsp) 70 and Hsp90, but not Grp94, interact with hERG wild type (WT) during maturation. The specific Hsp90 inhibitor geldanamycin prevents maturation and increases proteasomal degradation of hERG WT, while reducing hERG currents in heterologous expression systems. In ventricular myocytes, inhibition of Hsp90 also decreases IKr, whereas geldanamycin had no effect on IKs or heterologously expressed Kv2.1 and Kv1.5 currents. Both Hsp90 and Hsp70 interact directly with the core-glycosylated form of hERG WT present in the endoplasmic reticulum but not the fully glycosylated, cell-surface form. For the trafficking-deficient LQT2 mutants, hERG R752W and hERG G601S, interactions with Hsp90 and Hsp70 are increased as both mutants remained tightly associated with Hsp90 and Hsp70 in the endoplasmic reticulum. Incubation at lower temperature for R752W or with the hERG blocker astemizole for G601S dissociates channel-chaperone complexes and restores trafficking. In contrast, nonfunctional but trafficking-competent hERG G628S is released from chaperone complexes during maturation comparable to WT. We conclude that Hsp90 and Hsp70 are crucial for the maturation of hERG WT as well as the retention of trafficking-deficient LQT2 mutants. The full text of this article is available online at http://www.circresaha.org.


Circulation Research | 1998

Molecular Determinants of Dofetilide Block of HERG K+ Channels

Eckhard Ficker; Wolfgang Jarolimek; Johann Kiehn; Arnd Baumann; Arthur M. Brown

The human ether-a-go-go-related gene (HERG) encodes a K+ channel with biophysical properties nearly identical to the rapid component of the cardiac delayed rectifier K+ current (IKr). HERG/IKr channels are a prime target for the pharmacological management of arrhythmias and are selectively blocked by class III antiarrhythmic methanesulfonanilide drugs, such as dofetilide, E4031, and MK-499, at submicromolar concentrations. By contrast, the closely related bovine ether-a-go-go channel (BEAG) is 100-fold less sensitive to dofetilide. To identify the molecular determinants for dofetilide block, we first engineered chimeras between HERG and BEAG and then used site-directed mutagenesis to localize single amino acid residues responsible for block. Using constructs heterologously expressed in Xenopus oocytes, we found that transplantation of the S5-S6 linker from BEAG into HERG removed high-affinity block by dofetilide. A point mutation in the S5-S6 linker region, HERG S620T, abolished high-affinity block and interfered with C-type inactivation. Thus, our results indicate that important determinants of dofetilide binding are localized to the pore region of HERG. Since the loss of high-affinity drug binding was always correlated with a loss of C-type inactivation, it is possible that the changes observed in drug binding are due to indirect allosteric modifications in the structure of the channel protein and not to the direct interaction of dofetilide with the respective mutated site chains. However, the chimeric approach was not able to identify domains outside the S5-S6 linker region of the HERG channel as putative candidates involved in drug binding. Moreover, the reverse mutation BEAG T432S increased the affinity of BEAG K+ channels for dofetilide, whereas C-type inactivation could not be recovered. Thus, the serine in position HERG 620 may participate directly in dofetilide binding; however, an intact C-type inactivation process seems to be crucial for high-affinity drug binding.


Nature | 2012

Circadian rhythms govern cardiac repolarization and arrhythmogenesis.

Darwin Jeyaraj; Saptarsi M. Haldar; Xiaoping Wan; Mark D. McCauley; Juergen Ripperger; Kun Hu; Yuan Lu; Betty L. Eapen; Nikunj Sharma; Eckhard Ficker; Michael J. Cutler; James Gulick; Atsushi Sanbe; Jeffrey Robbins; Sophie Demolombe; Roman V. Kondratov; Steven Shea; Urs Albrecht; Xander H.T. Wehrens; David S. Rosenbaum; Mukesh K. Jain

Sudden cardiac death exhibits diurnal variation in both acquired and hereditary forms of heart disease, but the molecular basis of this variation is unknown. A common mechanism that underlies susceptibility to ventricular arrhythmias is abnormalities in the duration (for example, short or long QT syndromes and heart failure) or pattern (for example, Brugada’s syndrome) of myocardial repolarization. Here we provide molecular evidence that links circadian rhythms to vulnerability in ventricular arrhythmias in mice. Specifically, we show that cardiac ion-channel expression and QT-interval duration (an index of myocardial repolarization) exhibit endogenous circadian rhythmicity under the control of a clock-dependent oscillator, krüppel-like factor 15 (Klf15). Klf15 transcriptionally controls rhythmic expression of Kv channel-interacting protein 2 (KChIP2), a critical subunit required for generating the transient outward potassium current. Deficiency or excess of Klf15 causes loss of rhythmic QT variation, abnormal repolarization and enhanced susceptibility to ventricular arrhythmias. These findings identify circadian transcription of ion channels as a mechanism for cardiac arrhythmogenesis.


Journal of Biological Chemistry | 2002

The binding site for channel blockers that rescue misprocessed human long QT syndrome type 2 ether-a-gogo-related gene (HERG) mutations.

Eckhard Ficker; Carlos A. Obejero-Paz; Shuxia Zhao; Arthur M. Brown

Mutations in the humanether-a-gogo-related gene (HERG) K+ channel gene cause chromosome 7-linked long QT syndrome type 2 (LQT2), which is characterized by a prolonged QT interval in the electrocardiogram and an increased susceptibility to life-threatening cardiac arrhythmias. LQT2 mutations produce loss-of-function phenotypes and reduceI Kr currents either by the heteromeric assembly of non- or malfunctioning channel subunits with wild type subunits at the cell surface or by retention of misprocessed mutant HERG channels in the endoplasmic reticulum. Misprocessed mutations often encode for channel proteins that are functional upon incorporation into the plasma membrane. As a result the pharmacological correction of folding defects and restoration of protein function are of considerable interest. Here we report that the trafficking-deficient pore mutation HERG G601S was rescued by a series of HERG channel blockers that increased cell surface expression. Rescue by these pharmacological chaperones varied directly with their blocking potency. We used structure-activity relationships and site-directed mutagenesis to define the binding site of the pharmacological chaperones. We found that binding occurred in the inner cavity and correlated with hydrophobicity and cationic charge. Rescue was domain-restricted because the trafficking of two misprocessed mutations in the C terminus, HERG F805C and HERG R823W, was not restored by channel blockers. Our findings represent a first step toward the design of pharmacological chaperones that will rescue HERG K+ channels without block.


The EMBO Journal | 1995

C-TERMINUS DETERMINANTS FOR MG2+ AND POLYAMINE BLOCK OF THE INWARD RECTIFIER K+ CHANNEL IRK1

Maurizio Taglialatela; Eckhard Ficker; Barbara A. Wible; Arthur M. Brown

Critical loci for ion conduction in inward rectifier K+ channels are only now being discovered. The C‐terminal region of IRK1 plays a crucial role in Mg2+i blockade and single‐channel K+ conductance. A negatively charged aspartate in the putative second transmembrane domain (position 172) is essential for time‐dependent block by the cytoplasmic polyamines spermine and spermidine. We have now localized the C‐terminus effect in IRK1 to a single, negatively charged residue (E224). Mutation of E224 to G, Q and S drastically reduced rectification. Furthermore, the IRK1 E224G mutation decreased block by Mg2+i and spermidine and, like the E224Q mutation, caused a dramatic reduction in the apparent single‐channel K+ conductance. The double mutation IRK1 D172N+ E224G was markedly insensitive to spermidine block, displaying an affinity similar to ROMK1. The results are compatible with a model in which the negatively charged residue at position 224, E224, is a major determinant of pore properties in IRK1. By means of a specific interaction with the negatively charged residue at position 172, D172, E224 contributes to the formation of the binding pocket for Mg2+ and polyamines, a characteristic of strong inward rectifiers.


Biochemical Society Transactions | 2007

hERG channel trafficking: novel targets in drug-induced long QT syndrome

Adrienne T. Dennis; Lu Wang; Xiaoping Wan; Eckhard Ficker

The cardiac potassium channel hERG (human ether-a-go-go-related gene) encodes the alpha-subunit of the rapid delayed rectifier current I(Kr) in the heart, which contributes to terminal repolarization in human cardiomyocytes. Direct block of hERG/I(Kr) channels by a large number of therapeutic compounds produces acLQTS [acquired LQTS (long QT syndrome)] characterized by drug-induced QT prolongation and torsades de pointes arrhythmias. The cardiotoxicity associated with unintended hERG block has prompted pharmaceutical companies to screen developmental compounds for hERG blockade and made hERG a major target in drug safety programmes. More recently, a novel form of acLQTS has been discovered that may go undetected in most conventional safety assays. Several therapeutic compounds have been identified that reduce hERG/I(Kr) currents not by direct block but by inhibition of hERG/I(Kr) trafficking to the cell surface. Important examples are antineoplastic Hsp90 (heat-shock protein 90) inhibitors such as (i) geldanamycin, (ii) the leukaemia drug arsenic trioxide, (iii) the antiprotozoical pentamidine, (iv) probucol, a cholesterol-lowering drug, and (v) fluoxetine, a widely used antidepressant. Increased awareness of drug-induced hERG trafficking defects will help to further reduce the potentially lethal adverse cardiac events associated with acLQTS.


Journal of Pharmacology and Experimental Therapeutics | 2006

Cardiac Glycosides as Novel Inhibitors of Human Ether-a-go-go-Related Gene Channel Trafficking

Lu Wang; Barbara A. Wible; Xiaoping Wan; Eckhard Ficker

Direct block of the cardiac potassium channel human ether-a-go-go-related gene (hERG) by a large, structurally diverse group of therapeutic compounds causes drug-induced QT prolongation and torsades de pointes arrhythmias. In addition, several therapeutic compounds have been identified more recently that prolong the QT interval by inhibition of hERG trafficking to the cell surface. We used a surface expression assay to identify novel compounds that interfere with hERG trafficking and found that cardiac glycosides are potent inhibitors of hERG expression at the cell surface. Further investigation of digitoxin, ouabain, and digoxin revealed that all three cardiac glycosides reduced expression of the fully glycosylated cell surface form of hERG on Western blots, indicating that channel exit from the endoplasmic reticulum is blocked. Likewise, hERG currents were reduced with nanomolar affinity on long-term exposure. hERG trafficking inhibition was initiated by cardiac glycosides through direct block of Na+/K+ pumps and not via off-target interactions with hERG or another closely associated protein in its processing or export pathway. In isolated guinea pig myocytes, long-term exposure to 30 nM of the clinically used drugs digoxin or digitoxin reduced hERG/rapidly activating delayed rectifier K+ current (IKr) currents by approximately 50%, whereas three other cardiac membrane currents—inward rectifier current, slowly activating delayed rectifier K+ current, and calcium current—were not affected. Importantly, 100 nM digitoxin prolonged action potential duration on long-term exposure consistent with a reduction in hERG/IKr channel number. Thus, cardiac glycosides are able to delay cardiac repolarization at nanomolar concentrations via hERG trafficking inhibition, and this may contribute to the complex electrocardiographic changes seen with compounds such as digitoxin.


PLOS ONE | 2012

A Small Molecule Agonist of EphA2 Receptor Tyrosine Kinase Inhibits Tumor Cell Migration In Vitro and Prostate Cancer Metastasis In Vivo

Aaron Petty; Eugene Myshkin; Haina Qin; Hong Guo; Hui Miao; Gregory P. Tochtrop; Jer Tsong Hsieh; Phillip Page; Lili Liu; Daniel J. Lindner; Chayan Acharya; Alexander D. MacKerell; Eckhard Ficker; Jianxing Song; Bingcheng Wang

During tumor progression, EphA2 receptor can gain ligand-independent pro-oncogenic functions due to Akt activation and reduced ephrin-A ligand engagement. The effects can be reversed by ligand stimulation, which triggers the intrinsic tumor suppressive signaling pathways of EphA2 including inhibition of PI3/Akt and Ras/ERK pathways. These observations argue for development of small molecule agonists for EphA2 as potential tumor intervention agents. Through virtual screening and cell-based assays, we report here the identification and characterization of doxazosin as a novel small molecule agonist for EphA2 and EphA4, but not for other Eph receptors tested. NMR studies revealed extensive contacts of doxazosin with EphA2/A4, recapitulating both hydrophobic and electrostatic interactions recently found in the EphA2/ephrin-A1 complex. Clinically used as an α1-adrenoreceptor antagonist (Cardura®) for treating hypertension and benign prostate hyperplasia, doxazosin activated EphA2 independent of α1-adrenoreceptor. Similar to ephrin-A1, doxazosin inhibited Akt and ERK kinase activities in an EphA2-dependent manner. Treatment with doxazosin triggered EphA2 receptor internalization, and suppressed haptotactic and chemotactic migration of prostate cancer, breast cancer, and glioma cells. Moreover, in an orthotopic xenograft model, doxazosin reduced distal metastasis of human prostate cancer cells and prolonged survival in recipient mice. To our knowledge, doxazosin is the first small molecule agonist of a receptor tyrosine kinase that is capable of inhibiting malignant behaviors in vitro and in vivo.


British Journal of Pharmacology | 2002

The antihistamine fexofenadine does not affect IKr currents in a case report of drug-induced cardiac arrhythmia

Constanze R Scherer; Christian Lerche; Niels Decher; Adrienne T. Dennis; Patrick Maier; Eckhard Ficker; Andreas E. Busch; Bernd Wollnik; Klaus Steinmeyer

The human HERG gene encodes the cardiac repolarizing K+ current IKr and is genetically inactivated in inherited long QT syndrome 2 (LQTS2). The antihistamine terfenadine blocks HERG channels, and can cause QT prolongation and torsades de pointes, whereas its carboxylate fexofenadine lacks HERG blocking activity. In the present study the ability of fexofenadine to block the K897T HERG channel variant was investigated. The underlying single nucleotide polymorphism (SNP) A2960C was identified in a patient reported to develop fexofenadine‐associated LQTS. K897T HERG channels produced wild‐type‐like currents in Xenopus oocytes. Even at a concentration of 100 μM, fexofenadine did not inhibit wild‐type or K897T HERG channels. Coexpression of wild‐type and K897T HERG with the ß‐subunit MiRP1, slightly changed current kinetics but did not change sensitivity to terfenadine and fexofenadine. Western blot analysis and immunostaining of transiently transfected COS‐7 cells demonstrated that overall expression level, glycosylation pattern and subcellular localization of K897T HERG is indistinguishable from wild‐type HERG protein, and not altered in the presence of 1 μM fexofenadine. We provide the first functional characterization of the K897T HERG variant. We demonstrated that K897T HERG is similar to wild‐type HERG, and is insensitive to fexofenadine. Although the polymorphism changes PKA and PKC phosphorylation sites, regulation of K897T HERG by these kinases is not altered. Our results strongly indicate that QT lengthening and cardiac arrhythmia in the reported case of drug‐induced LQT are not due to the K897T exchange or to an inhibitory effect of fexofenadine on cardiac IKr currents.


British Journal of Pharmacology | 2009

Regulation of two-pore-domain (K2P) potassium leak channels by the tyrosine kinase inhibitor genistein

Jakob Gierten; Eckhard Ficker; Ramona Bloehs; K Schlömer; Sven Kathöfer; Eberhard P. Scholz; Edgar Zitron; Claudia Kiesecker; Alexander Bauer; Rüdiger Becker; Hugo A. Katus; Christoph A. Karle; Dierk Thomas

Two‐pore‐domain potassium (K2P) channels mediate potassium background (or ‘leak’) currents, controlling excitability by stabilizing membrane potential below firing threshold and expediting repolarization. Inhibition of K2P currents permits membrane potential depolarization and excitation. As expected for key regulators of excitability, leak channels are under tight control from a plethora of stimuli. Recently, signalling via protein tyrosine kinases (TKs) has been implicated in ion channel modulation. The objective of this study was to investigate TK regulation of K2P channels.

Collaboration


Dive into the Eckhard Ficker's collaboration.

Top Co-Authors

Avatar

Xiaoping Wan

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Isabelle Deschênes

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arthur M. Brown

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Adrienne T. Dennis

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Barbara A. Wible

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Haiyan Liu

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lu Wang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge