Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eckhard Worch is active.

Publication


Featured researches published by Eckhard Worch.


Water Research | 2009

Electrochemical disinfection of biologically treated wastewater from small treatment systems by using boron-doped diamond (BDD) electrodes - contribution for direct reuse of domestic wastewater.

Viktor Schmalz; Thomas Dittmar; Daniela Haaken; Eckhard Worch

The aim of the study was to demonstrate the application potential of boron-doped diamond electrodes (BDD) in electrochemical disinfection of biologically treated sewage for direct recycling of domestic wastewater. Discontinuous bulk disinfection experiments with secondary effluents and model solutions were performed to investigate the influence of operating conditions and wastewater parameters on disinfection efficiency and formation of disinfection by-products (adsorbable organically bound halogens, AOX). The inactivation rate accelerates with increasing current density caused by a faster generation of electrochemical oxidants (ECO). It could be shown that the effect of OH radicals in case of the direct electrochemical disinfection of chloride-containing secondary effluents with BDD is negligible because of their fast reaction with typical radical scavengers. The dominating role of electrochemically generated free chlorine in the disinfection process could be explicitly verified. It could be also shown that the disinfection efficiency is strongly affected by the specific wastewater parameters temperature and pH. These effects can be explained by the behaviour of the reactive species. The migration-controlled generation of ECO can be accelerated under turbulent hydrodynamic conditions. The formation of disinfection by-products (AOX) correlates with the introduced electric charge Q applied per volume and is independent of the applied current density.


Water Research | 2009

Photoinitiated oxidation of geosmin and 2-methylisoborneol by irradiation with 254 nm and 185 nm UV light.

Kristin Kutschera; Hilmar Börnick; Eckhard Worch

The degradation of geosmin and 2-methylisoborneol (2-MIB) by UV irradiation at different wavelengths was investigated under varying boundary conditions. The results showed that conventional UV radiation (254 nm) is ineffective in removing these compounds from water. In contrast to the usual UV radiation UV/VUV radiation (254+185 nm) was more effective in the removal of the taste and odour compounds. The degradation could be described by a simple pseudo first-order rate law with rate constants of about 1.2 x 10(-3) m(2)J(-1) for geosmin and 2-MIB in ultrapure water. In natural water used for drinking water abstraction the rate constants decreased to 2.7 x 10(-4) m(2)J(-1) for geosmin and 2.5 x 10(-4) m(2)J(-1) for 2-MIB due to the presence of NOM. Additionally, the formation of the by-product nitrite was studied. In the UV/VUV irradiation process up to 0.6 mg L(-1) nitrite was formed during the complete photoinitiated oxidation of the odour compounds. However, the addition of low ozone doses could prevent the formation of nitrite in the UV/VUV irradiation experiments.


Chemosphere | 2012

Sorption influenced transport of ionizable pharmaceuticals onto a natural sandy aquifer sediment at different pH.

Mario Schaffer; Norman Boxberger; Hilmar Börnick; Tobias Licha; Eckhard Worch

The pH-dependent transport of eight selected ionizable pharmaceuticals was investigated by using saturated column experiments. Seventy-eight different breakthrough curves on a natural sandy aquifer material were produced and compared for three different pH levels at otherwise constant conditions. The experimentally obtained K(OC) data were compared with calculated K(OC) values derived from two different logK(OW)-logK(OC) correlation approaches. A significant pH-dependence on sorption was observed for all compounds with pK(a) in the considered pH range. Strong retardation was measured for several compounds despite their hydrophilic character. Besides an overall underestimation of K(OC), the comparison between calculated and measured values only yields meaningful results for the acidic and neutral compounds. Basic compounds retarded much stronger than expected, particularly at low pH when their cationic species dominated. This is caused by additional ionic interactions, such as cation exchange processes, which are insufficiently considered in the applied K(OC) correlations.


Water Research | 2008

Predicting anion breakthrough in granular ferric hydroxide (GFH) adsorption filters

Alexander Sperlich; Sebastian Schimmelpfennig; Benno Baumgarten; Arne Genz; Gary Amy; Eckhard Worch; Martin Jekel

Adsorption of arsenate, phosphate, salicylic acid, and groundwater DOC onto granular ferric hydroxide (GFH) was studied in batch and column experiments. Breakthrough curves were experimentally determined and modelled using the homogeneous surface diffusion model (HSDM) and two of its derivatives, the constant pattern homogeneous surface diffusion model (CPHSDM) and the linear driving force model (LDF). Input parameters, the Freundlich isotherm constants, and mass transfer coefficients for liquid- and solid-phase diffusion were determined and analysed for their influence on the shape of the breakthrough curve. HSDM simulation results predict the breakthrough of all investigated substances satisfactorily, but LDF and CPHSDM could not describe arsenate breakthrough correctly. This is due to a very slow intraparticle diffusion and hence higher Biot numbers. Based on this observation, limits of applicability were defined for LDF and CPHSDM. When designing fixed-bed adsorbers, model selection based on known or estimated Biot and Stanton numbers is possible.


Water Research | 2011

Adsorption of geosmin and 2-methylisoborneol onto powdered activated carbon at non-equilibrium conditions: Influence of NOM and process modelling

Kristin Zoschke; Christina Engel; Hilmar Börnick; Eckhard Worch

The adsorption of the taste and odour (T&O) compounds geosmin and 2-methylisoborneol (2-MIB) onto powdered activated carbon (PAC) has been studied under conditions which are typical for a drinking water treatment plant that uses reservoir water for drinking water production. The reservoir water as well as the pre-treated water (after flocculation) contains NOM that competes with the trace compounds for the adsorption sites on the carbon surface. Although the DOC concentrations in the reservoir water and in the pre-treated water were different, no differences in the competitive adsorption could be seen. By using two special characterisation methods for NOM (adsorption analysis, LC/OCD) it could be proved that flocculation removes only NOM fractions which are irrelevant for competitive adsorption. Different model approaches were applied to describe the competitive adsorption of the T&O compounds and NOM, the tracer model, the equivalent background compound model, and the simplified equivalent background compound model. All these models are equilibrium models but in practice the contact time in flow-through reactors is typically shorter than the time needed to establish the adsorption equilibrium. In this paper it is demonstrated that the established model approaches can be used to describe competitive adsorption of T&O compounds and NOM also under non-equilibrium conditions. The results of the model applications showed that in particular the simplified equivalent background compound model is a useful tool to determine the PAC dosage required to reduce the T&O compounds below the threshold concentration.


Water Research | 2014

Impact of EfOM size on competition in activated carbon adsorption of organic micro-pollutants from treated wastewater.

Frederik Zietzschmann; Eckhard Worch; Johannes Altmann; Aki Sebastian Ruhl; Alexander Sperlich; Felix Meinel; Martin Jekel

The competitive impacts of different fractions of wastewater treatment plant effluent organic matter (EfOM) on organic micro-pollutant (OMP) adsorption were investigated. The fractionation was accomplished using separation by nanofiltration (NF). The waters resulting from NF were additionally treated to obtain the same dissolved organic carbon (DOC) concentrations as the initial water. Using size exclusion chromatography (LC-OCD) it could be shown that the NF treatment resulted in an EfOM separation by size. Adsorption tests showed different competitive effects of the EfOM fractions with the OMP. While large EfOM compounds that were retained in NF demonstrated a reduced competition as compared to the raw water, the NF-permeating EfOM compounds showed an increased competition with the majority of the measured OMP. The effects of small size EfOM are particularly negative for OMP which are weak/moderate adsorbates. Adsorption analysis was carried out for the differently fractionized waters. The small sized EfOM contain better adsorbable compounds than the raw water while the large EfOM are less adsorbable. This explains the observed differences in the EfOM competitiveness. The equivalent background compound (EBC) model was applied to model competitive adsorption between OMP and EfOM and showed that the negative impacts of EfOM on OMP adsorption increase with decreasing size of the EfOM fractions. The results suggest that direct competition for adsorption sites on the internal surface of the activated carbon is more substantial than indirect competition due to pore access restriction by blockage. Another explication for reduced competition by large EfOM compounds could be the inability to enter and block the pores due to size exclusion.


Water Research | 2012

UV-based advanced oxidation processes for the treatment of odour compounds: efficiency and by-product formation.

Kristin Zoschke; Norman Dietrich; Hilmar Börnick; Eckhard Worch

The occurrence of the taste and odour compounds geosmin and 2-methyl isoborneol (2-MIB) affects the organoleptic quality of raw waters from drinking water reservoirs worldwide. UV-based oxidation processes for the removal of these substances are an alternative to adsorption and biological processes, since they additionally provide disinfection of the raw water. We could show that the concentration of geosmin and 2-MIB could be reduced by VUV irradiation and the combination of UV irradiation with ozone and hydrogen peroxide in pure water and water from a drinking water reservoir. The figure of merit EE/O is an appropriate tool to compare the AOPs and showed that VUV and UV/O(3) yielded the lowest treatment costs for the odour compounds in pure and raw water, respectively. Additionally, VUV irradiation with addition of ozone, generated by the VUV lamp, was evaluated. The generation of ozone and the irradiation were performed in a single reactor system using the same low-pressure mercury lamp, thereby reducing the energy consumption of the treatment process. The formation of the undesired by-products nitrite and bromate was investigated. The combination of VUV irradiation with ozone produced by a VUV lamp avoided the formation of relevant concentrations of the by-products. The internal generation of ozone is capable to produce ozone concentrations sufficient to reduce EE/O below 1 kWh m(-3) and without the risk of the formation of nitrite or bromate above the maximum contaminant level.


Journal of Hydrology | 2002

Laboratory tests for simulating attenuation processes of aromatic amines in riverbank filtration

Eckhard Worch; Thomas Grischek; Hilmar Börnick; Petra Eppinger

Based on a two-step laboratory test including biodegradation and adsorption, it is possible to derive a prognosis of the behaviour of organic compounds during riverbank filtration and to prioritise the substances with regard to drinking water quality. It is shown for aromatic amines, used as an example of organics found in River Elbe water, Germany, how the simulation methods provide basic information about rate constants of biological degradation and adsorption equilibrium constants under conditions that are as realistic as possible. Biodegradation of nitroanilines and higher chlorinated anilines is relatively slow and adsorption onto the sandy aquifer material is weak. Accordingly, occurrence of these compounds in the production wells of the waterworks cannot be excluded.


Environmental Earth Sciences | 2012

Challenges of an integrated water resource management for the Distrito Federal, Western Central Brazil: climate, land-use and water resources

Carsten Lorz; Gudrun Abbt-Braun; F. Bakker; P. Borges; Hilmar Börnick; L. Fortes; Fritz H. Frimmel; A. Gaffron; N. Hebben; René Höfer; Franz Makeschin; K. Neder; L. H. Roig; B. Steiniger; Michael Strauch; Detlef Hans-Gert Walde; Holger Weiß; Eckhard Worch; J. Wummel

Land-use/cover change (LUCC) and climate change are major controlling factors for water resources in the Distrito Federal in Western Central Brazil. Dynamic LUCC in the region has severe impacts on water resources, while climate changes during the last three decades is thought to have only moderate effects. LUCC affects water quantity mostly during base flow conditions. River basins with substantial expansion of agriculture since the end 1970s show a dramatic decrease of base flow discharge by 40–70%, presumably due to irrigation. In contrast, the effects of urbanization on runoff are less distinct, since factors controlling runoff generation might be more variable. For water quality, we found urban areas to have a strong influence on the parameters CSB, NH4+, and suspended solids. In addition, we assume emerging pollutants, e.g. organic (micro)pollutants, might play a major role in the future. The project IWAS-ÁGUA DF focuses on creating the scientific base to face these problems in frame of an IWRM concept for the region. Results of our study will be a contribution to an IRWM concept for the Distrito Federal and will help to maintain high standards in water supply for the region.


Journal of Contaminant Hydrology | 2004

Modelling the solute transport under nonequilibrium conditions on the basis of mass transfer equations.

Eckhard Worch

A solute transport model that describes nonequilibrium adsorption in soil/groundwater systems by mass transfer equations for film and intraparticle diffusion is presented. The model is useful in cases where breakthrough curve spreading cannot be explained by dispersion only. To evaluate its validity, the model was applied to several data sets from column experiments. The validity was also proved by a comparison with an analytical solution for the limiting case of predominating dispersion. Furthermore, a sensitivity analysis was performed to illustrate the influence of different process and sorption parameters (pore water velocity, intraparticle mass transfer coefficient, isotherm nonlinearity) on the shape of the calculated breakthrough curves. The application of the proposed model is discussed in comparison to the widely used dispersed flow/local equilibrium model, and a relationship between both models, which is based on a lumped parameter approach, is shown.

Collaboration


Dive into the Eckhard Worch's collaboration.

Top Co-Authors

Avatar

Hilmar Börnick

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Viktor Schmalz

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas Dittmar

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Thomas Grischek

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Heinz-Jürgen Brauch

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tobias Licha

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Daniela Haaken

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mario Schaffer

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Jenny Gun

Hebrew University of Jerusalem

View shared research outputs
Researchain Logo
Decentralizing Knowledge