Ed S. Krol
University of Saskatchewan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ed S. Krol.
Drug Metabolism Reviews | 2000
Ed S. Krol; Kimberly Kramer-Stickland; Daniel C. Liebler
Topical application of vitamin E has been shown to decrease the incidence of ultraviolet (UV)-induced skin cancer in mice. Vitamin E provides protection against UV-induced skin photodamage through a combination of antioxidant and UV absorptive properties. Topical application of α-tocopherol on mouse skin inhibits the formation of cyclobutane pyrimidine photoproducts. However, topically applied α-tocopherol is rapidly depleted by UVB radiation in a dose-dependent manner. The photooxidative fate of the α-tocopherol depends on the local environment of the vitamin E. α-Tocopherol quinone and α-tocopherol quinone epoxides are principal photoproducts of vitamin E that has penetrated into the epidermal layer of the skin, whereas tocopherol dimers and trimers are formed from α-tocopherol in a bulk phase at the skin surface. Dimer and trimer products may participate in prevention of UV-induced photodamage.
British Journal of Nutrition | 2009
M. A. Felmlee; G. Woo; E. Simko; Ed S. Krol; Alister D. Muir; Jane Alcorn
The present study involved a comparative analysis of the effects of purified flaxseed lignans, secoisolariciresinol diglucoside (SDG) and its aglycone metabolite (SECO), in hyperlipidaemic rats. For hypercholesterolaemia, female Wistars (six rats per group) were fed a standard or 1 % cholesterol diet and orally administered 0, 3 or 6 mg SDG/kg or 0, 1.6 or 3.2 mg SECO/kg body weight once daily for 4 weeks. Hypertriacylglycerolaemia was induced in male Sprague-Dawley rats (ten rats per group) by supplementing tap water with 10 % fructose. These rats were orally administered 0, 3 or 6 mg SDG/kg body weight once daily for 2 weeks. Fasting blood samples (12 h) were collected predose and at the end of the dosing period for serum lipid analyses. Rats were killed and livers rapidly excised and sectioned for lipid, mRNA and histological analyses. Chronic administration of equimolar amounts of SDG and SECO caused similar dose-dependent reductions in rate of body-weight gain and in serum total and LDL-cholesterol levels and hepatic lipid accumulation. SDG and SECO failed to alter hepatic gene expression of commonly reported regulatory targets of lipid homeostasis. SDG had no effect on serum TAG, NEFA, phospholipids and rate of weight gain in 10 % fructose-supplemented rats. In conclusion, our data suggest that the lignan component of flaxseed contributes to the hypocholesterolaemic effects of flaxseed consumption observed in humans. Future studies plan to identify the biochemical mechanism(s) through which flaxseed lignans exert their beneficial effects and the lignan form(s) responsible.
Lipids | 2001
Ed S. Krol; Daniel D. J. Escalante; Daniel C. Liebler
Abstractα-Tocopherol (α-TH) undergoes ultraviolet (UV)-induced photooxidation on the surface of mouse skin to produce a dihydroxydimer, a spirodimer, and trimers as the major products. To study the photochemistry involved, we UV-irradiated α-TH in a thin film on a glass petri dish. Photooxidation yielded a mixture of dihydroxydimer, spirodimer, and trimers. In the time-course studies, the dihydroxydimer accumulated and then was further oxidized, whereas the spirodimer and trimers accumulated more gradually. Reaction of two tocopheroxyl radicals forms the dihydroxydimer, whereas the spirodimer may be formed either by photooxidation of α-TH to an orthoquinone methide (o-QM) followed by a Diels-Alder reaction or by photooxidation of α-TH to the dihydroxydimer, followed by two-electron oxidation. Irradiation of a mixture of d10-labeled and unlabeled (d0) dihydroxydimer produced a mixture of labeled and unlabeled spirodimers as detected by positive atmospheric pressure chemical ionization-mass spectrometry. The absence of mixed label spirodimers among products indicated that direct oxidation of the dihydroxydimer is a facile route to the spirodimer and is probably the major spirodimer-forming reaction in α-TH photooxidations. Trimer formation from the dihydroxydimer and the spirodimer was observed, however, and requires an o-QM intermediate. Photooxidation of d10-labeled and unlabeled (d0) dihydroxydimers yielded mixed isotopomers of the trimer products, thus demonstrating that the dihydroxydimer and spirodimers underwent conversion to o-QM intermediates. Photochemical conversion of α-TH to UV-absorbing dimer and trimer products may contribute to photoprotection by topically applied α-TH.
Journal of Agricultural and Food Chemistry | 2012
Sabia Maini; Heather L. Hodgson; Ed S. Krol
Flavonols such as kaempferol and quercetin are believed to provide protection against ultraviolet (UV)-induced damage to plants. Recent in vitro studies have examined the ability of flavonols to protect against UV-induced damage to mammalian cells. Stability of flavonols in cell culture media, however, has been problematic, especially for quercetin, one of the most widely studied flavonols. As part of our investigations into the potential for flavonols to protect skin against UV-induced damage, we have determined the stability of a series of flavonols that differ only in the number of substituents on the B-ring. We measured the stability of these flavonols over time to UVA radiation, Dulbeccos modified Eagles medium (DMEM), and Dulbeccos phosphate-buffered saline (DPBS) using high performance liquid chromatography with UV detection (HPLC-UV). The identification of the breakdown products of flavonols was accomplished by using a hybrid quadrupole linear ion trap mass spectrometer coupled with liquid chromatography. Tandem mass spectrometric analysis (MS/MS) of flavonol photoproducts was confirmed by comparing with the known standard samples. We have determined that flavonol stability decreases with increasing B-ring substitution, suggesting that future investigation of potential photoprotective flavonols will need to be cognizant of this trend.
Journal of Natural Products | 2008
Jennifer Billinsky; Ed S. Krol
The lignan meso-nordihydroguaiaretic acid is known to undergo spontaneous oxidation in alkaline solution. In the presence of the trapping agent glutathione, the major oxidation products are consistent with the formation of a meso-nordihydroguaiaretic acid ortho-quinone. In the absence of a trapping agent however, the major oxidation product of meso-nordihydroguaiaretic acid in aqueous solution is a unique, stable schisandrin-like dibenzocyclooctadiene lignan that may be responsible for some of the biological effects of nordihydroguaiaretic acid.
Journal of Natural Products | 2014
Jatinder Kaur Mukker; Deborah Michel; Alister D. Muir; Ed S. Krol; Jane Alcorn
Reports in the literature associate the dietary intake of flaxseed lignans with a number of health benefits. The major lignan found in flaxseed, secoisolariciresinol diglucoside (1), undergoes metabolism principally to secoisolariciresinol (2), enterodiol (3), and enterolactone (4) in the human gastrointestinal tract. Systemically, lignans are present largely as phase II enzyme conjugates. To improve understanding of the oral absorption characteristics, a systematic evaluation of the intestinal permeation was conducted and the conjugative metabolism potential of these lignans using the polarized Caco-2 cell system was analyzed. For permeation studies, lignans (100 μM) were added to acceptor or donor compartments and samples were taken at 2 h. For metabolism studies, lignans (100 μM) were incubated in Caco-2 for a maximum of 48 h. Cell lysates and media were treated with β-glucuronidase/sulfatase, and lignan concentrations were determined using HPLC. Apical-to-basal permeability coefficients for 2-4 were 8.0 ± 0.4, 7.7 ± 0.2, and 13.7 ± 0.2 (×10(-6)) cm/s, respectively, whereas efflux ratios were 0.8-1.2, consistent with passive diffusion. The permeation of compound 1 was not detected. The extent of conjugation after 48 h was <3%, ∼95%, ∼90%, and >99% for 1-4, respectively. These data suggest 2-4, but not 1 undergo passive permeation and conjugative metabolism by Caco-2 cells.
ACS Chemical Neuroscience | 2016
Joe Kakish; Kevin J.H. Allen; Troy A. Harkness; Ed S. Krol; Jeremy S. Lee
The misfolding of α-synuclein is a critical event in the death of dopaminergic neurons and the progression of Parkinsons disease. Previously, it was suggested that drugs, which bind to α-synuclein and form a loop structure between the N- and C-termini, tend to be neuroprotective, whereas others, which cause a more compact structure, tend to be neurotoxic. To improve the binding to α-synuclein, eight novel compounds were synthesized from a caffeine scaffold attached to (R,S)-1-aminoindan, (R,S)-nicotine, and metformin, and their binding to α-synuclein determined through nanopore analysis and isothermal titration calorimetry. The ability of the dimers to interact with α-synuclein in a cell system was assayed in a yeast model of PD which expresses an AS-GFP (α-synuclein-Green Fluorescent Protein) construct under the control of a galactose promoter. In 5 mM galactose this yeast strain will not grow and large cytoplasmic foci are observed by fluorescent microscopy. Two of the dimers, C8-6-I and C8-6-N, at a concentration of 0.1 μM allowed the yeast to grow normally in 5 mM galactose and the AS-GFP became localized to the periphery of the cell. Both dimers were superior when compared to the monomeric compounds. The presence of the dimers also caused the disappearance of preformed cytoplasmic foci. Nanopore analysis of C8-6-I and C8-6-N were consistent with simultaneous binding to both the N- and C-terminus of α-synuclein but the binding constants were only 105 M-1.
Bioorganic & Medicinal Chemistry | 2015
Isaac Asiamah; Heather L. Hodgson; Katherine Maloney; Kevin J.H. Allen; Ed S. Krol
Nordihydroguaiaretic acid (NDGA) is a natural polyphenol with a broad spectrum of pharmacological properties. However, its usefulness is hindered by the lack of understanding of its pharmacological and toxicological pathways. Previously we showed that oxidative cyclisation of NDGA at physiological pH forms a dibenzocyclooctadiene that may have therapeutic benefits whilst oxidation to an ortho-quinone likely mediates toxicological properties. NDGA analogues with higher propensity to cyclise under physiologically relevant conditions might have pharmacological implications, which motivated this study. We synthesized a series of NDGA analogues which were designed to investigate the structural features which influence the intramolecular cyclisation process and help to understand the mechanism of NDGAs autoxidative conversion to a dibenzocyclooctadiene lignan. We determined the ability of the NDGA analogues investigated to form dibenzocyclooctadienes and evaluated the oxidative stability at pH 7.4 of the analogues and the stability of any dibenzocyclooctadienes formed from the NDGA analogues. We found among our group of analogues the catechols were less stable than phenols, a single catechol-substituted ring is insufficient to form a dibenzocyclooctadiene lignan, and only compounds possessing a di-catechol could form dibenzocyclooctadienes. This suggests that quinone formation may not be necessary for cyclisation to occur and the intramolecular cyclisation likely involves a radical-mediated rather than an electrophilic substitution process. We also determined that the catechol dibenzocyclooctadienes autoxidised at comparable rates to the parent catechol. This suggests that assigning in vitro biological activity to the NDGA dibenzocyclooctadiene is premature and requires additional study.
Archive | 2012
Jennifer Billinsky; Katherine Maloney; Ed S. Krol; Jane Alcorn
The popularity in natural product use we witness today arose from a growing public skepticism about taking “pharmaceutical chemicals” to treat illness. Such skepticism was supplanted by a public perception that “medications” from natural sources are safer to use and have similar efficacies as their pharmaceutical equivalents. The diverse assortment of natural products on the shelves of pharmacies, health food stores, and grocery stores attest to this enhanced public demand, but has compelled regulatory agencies to question the adequacy of the safety and efficacy data associated with the use of these products (Natural Health Products Directorate 2007). In the current regulatory environment, full realization of the wellness and therapeutic value of these natural products can only come about with more rigorous assessments of their safety and efficacy.
Nutrition and Cancer | 2018
Yunyun Di; Franklyn De Silva; Ed S. Krol; Jane Alcorn
ABSTRACT Systemic cytotoxic chemotherapy remains the mainstay of metastatic breast cancer; however, prognosis and overall survival is unfavorable due to inadequate treatment response and/or unacceptable toxicity. Natural compounds and their active metabolites receive increasing attention as possible adjuvant therapy with cancer chemotherapeutics to improve treatment response, survival rates, and quality of life of breast cancer patients. This study investigated the combination of flaxseed lignans (Secoisolariciresinol and Enterolactone) with classic chemotherapeutic agents (Docetaxel, Doxorubicin, and Carboplatin) with different mechanisms of action to determine whether flaxseed lignans could enhance the cytotoxic effect of such drugs in the metastatic breast cancer cell lines, SKBR3 and MDA-MB-231. The experimental data suggests that flaxseed lignans significantly enhanced the ability of chemotherapeutic agents to cause cytotoxicity in SKBR3 and MDA-MB-231 breast cancer cells. A three compound combination study found that enterolactone and metformin together in combination with relatively low concentrations of chemotherapeutic drugs were able to significantly decrease cancer cell viability, compared to low concentrations of the individual chemotherapeutic drug alone. Our in vitro evaluation suggests a future direction in improving chemotherapeutic efficacy in breast cancer by adjuvant therapy with the flaxseed lignans.