Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edaire Cheng is active.

Publication


Featured researches published by Edaire Cheng.


Gut | 2013

Omeprazole blocks eotaxin-3 expression by oesophageal squamous cells from patients with eosinophilic oesophagitis and GORD

Edaire Cheng; Xi Zhang; Xiaofang Huo; Chunhua Yu; Qiuyang Zhang; David H. Wang; Stuart J. Spechler; Rhonda F. Souza

Objective Eosinophilic oesophagitis (EoE) and gastro-oesophageal reflux disease (GORD) can have similar clinical and histological features. Proton pump inhibitors (PPIs) are used to distinguish the disorders, with the assumption that only GORD can respond to PPIs. Oesophageal expression of eotaxin-3 stimulated by Th2 cytokines might contribute to oesophageal eosinophilia in EoE. Th2 cytokine effects on the oesophagus in GORD are not known. The objective of the authors was to explore the molecular mechanisms of Th2 cytokines on eotaxin-3 expression by oesophageal squamous cells from patients with GORD and EoE, and the effects of omeprazole on that eotaxin-3 expression. Design Using telomerase-immortalised and primary cultures of oesophageal squamous cells from GORD and EoE patients, the authors measured eotaxin-3 protein secretion stimulated by Th2 cytokines (interleukin (IL)-4 and IL-13). Eotaxin-3 promoter constructs were used to study transcriptional regulation. Cytokine-induced eotaxin-3 mRNA and protein expression were measured in the presence or absence of omeprazole. Results There were no significant differences between EoE and GORD primary cells in cytokine-stimulated eotaxin-3 protein secretion levels. In EoE and GORD cell lines, IL-4 and IL-13 activated the eotaxin-3 promoter, and significantly increased eotaxin-3 mRNA and protein expression. Omeprazole blocked the cytokine-stimulated increase in eotaxin-3 mRNA and protein expression in EoE and GORD cell lines. Conclusion Oesophageal squamous cells from GORD and EoE patients express similar levels of eotaxin-3 when stimulated by Th2 cytokines, and omeprazole blocks that eotaxin-3 expression. These findings suggest that PPIs might have eosinophil-reducing effects independent of effects on acid reflux and that response to PPIs might not distinguish EoE from GORD.


PLOS ONE | 2012

Omeprazole Blocks STAT6 Binding to the Eotaxin-3 Promoter in Eosinophilic Esophagitis Cells

Xi Zhang; Edaire Cheng; Xiaofang Huo; Chunhua Yu; Qiuyang Zhang; Thai H. Pham; David H. Wang; Stuart J. Spechler; Rhonda F. Souza

Background Patients who have esophageal eosinophilia without gastroesophageal reflux disease (GERD) nevertheless can respond to proton pump inhibitors (PPIs), which can have anti-inflammatory actions independent of effects on gastric acid secretion. In esophageal cell cultures, omeprazole has been reported to inhibit Th2 cytokine-stimulated expression of eotaxin-3, an eosinophil chemoattractant contributing to esophageal eosinophilia in eosinophilic esophagitis (EoE). The objective of this study was to elucidate molecular mechanisms underlying PPI inhibition of IL-4-stimulated eotaxin-3 production by esophageal cells. Methods/Findings Telomerase-immortalized and primary cultures of esophageal squamous cells from EoE patients were treated with IL-4 in the presence or absence of acid-activated omeprazole or lansoprazole. We measured eotaxin-3 protein secretion by ELISA, mRNA expression by PCR, STAT6 phosphorylation and nuclear translocation by Western blotting, eotaxin-3 promoter activation by an exogenous reporter construct, and STAT6, RNA polymerase II, and trimethylated H3K4 binding to the endogenous eotaxin-3 promoter by ChIP assay. Omeprazole in concentrations ≥5 µM significantly decreased IL-4-stimulated eotaxin-3 protein secretion and mRNA expression. Lansoprazole also blocked eotaxin-3 protein secretion. Omeprazole had no effect on eotaxin-3 mRNA stability or on STAT6 phosphorylation and STAT6 nuclear translocation. Rather, omeprazole blocked binding of IL-4-stimulated STAT6, RNA polymerase II, and trimethylated H3K4 to the eotaxin-3 promoter. Conclusions/Significance PPIs, in concentrations achieved in blood with conventional dosing, significantly inhibit IL-4-stimulated eotaxin-3 expression in EoE esophageal cells and block STAT6 binding to the promoter. These findings elucidate molecular mechanisms whereby patients with Th2 cytokine-driven esophageal eosinophilia can respond to PPIs, independent of effects on gastric acid secretion.


Gut | 2016

Proton pump inhibitor-responsive oesophageal eosinophilia: an entity challenging current diagnostic criteria for eosinophilic oesophagitis

Javier Molina-Infante; Albert J. Bredenoord; Edaire Cheng; Evan S. Dellon; Glenn T. Furuta; Sandeep K. Gupta; Ikuo Hirano; David A. Katzka; Fouad J. Moawad; Marc E. Rothenberg; Alain Schoepfer; Stuart J. Spechler; Ting Wen; Alex Straumann; Alfredo J. Lucendo

Consensus diagnostic recommendations to distinguish GORD from eosinophilic oesophagitis (EoE) by response to a trial of proton pump inhibitors (PPIs) unexpectedly uncovered an entity called ‘PPI-responsive oesophageal eosinophilia’ (PPI-REE). PPI-REE refers to patients with clinical and histological features of EoE that remit with PPI treatment. Recent and evolving evidence, mostly from adults, shows that patients with PPI-REE and patients with EoE at baseline are clinically, endoscopically and histologically indistinguishable and have a significant overlap in terms of features of Th2 immune-mediated inflammation and gene expression. Furthermore, PPI therapy restores oesophageal mucosal integrity, reduces Th2 inflammation and reverses the abnormal gene expression signature in patients with PPI-REE, similar to the effects of topical steroids in patients with EoE. Additionally, recent series have reported that patients with EoE responsive to diet/topical steroids may also achieve remission on PPI therapy. This mounting evidence supports the concept that PPI-REE represents a continuum of the same immunological mechanisms that underlie EoE. Accordingly, it seems counterintuitive to differentiate PPI-REE from EoE based on a differential response to PPI therapy when their phenotypic, molecular, mechanistic and therapeutic features cannot be reliably distinguished. For patients with symptoms and histological features of EoE, it is reasonable to consider PPI therapy not as a diagnostic test, but as a therapeutic agent. Due to its safety profile, ease of administration and high response rates (up to 50%), PPI can be considered a first-line treatment before diet and topical steroids. The reasons why some patients with EoE respond to PPI, while others do not, remain to be elucidated.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Deoxycholic acid causes DNA damage while inducing apoptotic resistance through NF-κB activation in benign Barrett's epithelial cells.

Xiaofang Huo; Stefanie Juergens; Xi Zhang; Davood Rezaei; Chunhua Yu; Eric D. Strauch; Jian Ying Wang; Edaire Cheng; Frank Meyer; David H. Wang; Qiuyang Zhang; Stuart J. Spechler; Rhonda F. Souza

Gastroesophageal reflux is associated with adenocarcinoma in Barretts esophagus, but the incidence of this tumor is rising, despite widespread use of acid-suppressing medications. This suggests that refluxed material other than acid might contribute to carcinogenesis. We looked for potentially carcinogenetic effects of two bile acids, deoxycholic acid (DCA) and ursodeoxycholic acid (UDCA), on Barretts epithelial cells in vitro and in vivo. We exposed Barretts (BAR-T) cells to DCA or UDCA and studied the generation of reactive oxygen/nitrogen species (ROS/RNS); expression of phosphorylated H2AX (a marker of DNA damage), phosphorylated IkBα, and phosphorylated p65 (activated NF-κB pathway proteins); and apoptosis. During endoscopy in patients, we took biopsy specimens of Barretts mucosa before and after esophageal perfusion with DCA or UDCA and assessed DNA damage and NF-κB activation. Exposure to DCA, but not UDCA, resulted in ROS/RNS production, DNA damage, and NF-κB activation but did not increase the rate of apoptosis in BAR-T cells. Pretreatment with N-acetyl-l-cysteine (a ROS scavenger) prevented DNA damage after DCA exposure, and DCA did induce apoptosis in cells treated with NF-κB inhibitors (BAY 11-7085 or AdIκB superrepressor). DNA damage and NF-κB activation were detected in biopsy specimens of Barretts mucosa taken after esophageal perfusion with DCA, but not UDCA. These data show that, in Barretts epithelial cells, DCA induces ROS/RNS production, which causes genotoxic injury, and simultaneously induces activation of the NF-κB pathway, which enables cells with DNA damage to resist apoptosis. We have demonstrated molecular mechanisms whereby bile reflux might contribute to carcinogenesis in Barretts esophagus.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2012

Tissue remodeling in eosinophilic esophagitis

Edaire Cheng; Rhonda F. Souza; Stuart J. Spechler

Eosinophilic esophagitis (EoE) is a recently recognized, immune-mediated disease characterized clinically by symptoms of esophageal dysfunction and histologically by eosinophil-predominant inflammation. The chronic esophageal eosinophilia of EoE is associated with tissue remodeling that includes epithelial hyperplasia, subepithelial fibrosis, and hypertrophy of esophageal smooth muscle. This remodeling causes the esophageal rings and strictures that frequently complicate EoE and underlies the mucosal fragility that predisposes to painful mucosal tears in the EoE esophagus. The pathogenesis of tissue remodeling in EoE is not completely understood, but emerging studies suggest that secretory products of eosinophils and mast cells, as well as cytokines produced by other inflammatory cells, epithelial cells, and stromal cells in the esophagus, all contribute to the process. Interleukin (IL)-4 and IL-13, Th2 cytokines overproduced in allergic disorders, have direct profibrotic and remodeling effects in EoE. The EoE esophagus exhibits increased expression of transforming growth factor (TGF)-β1, which is a potent activator of fibroblasts and a strong inducer of epithelial-mesenchymal transition. In addition, IL-4, IL-13, and TGF-β all have a role in regulating periostin, an extracellular matrix protein that might influence remodeling by acting as a ligand for integrins, by its effects on eosinophils or by activating fibrogenic genes in the esophagus. Presently, few treatments have been shown to affect the tissue remodeling that causes EoE complications. This report reviews the potential roles of fibroblasts, eosinophils, mast cells, and profibrotic cytokines in esophageal remodeling in EoE and identifies potential targets for future therapies that might prevent EoE complications.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2011

Cancer-related inflammation and Barrett's carcinogenesis: interleukin-6 and STAT3 mediate apoptotic resistance in transformed Barrett's cells

Hui Ying Zhang; Qiuyang Zhang; Xi Zhang; Chunhua Yu; Xiaofang Huo; Edaire Cheng; David H. Wang; Stuart J. Spechler; Rhonda F. Souza

Cancer-related inflammation recently has been proposed as a major physiological hallmark of malignancy. Some genetic alterations known to promote cellular proliferation and induce malignant transformation also may participate in an intrinsic inflammatory pathway that produces a cancer-promoting inflammatory microenvironment. Little is known about this intrinsic inflammatory pathway in Barretts esophagus. We have used a series of nontransformed and transformed human Barretts epithelial cell lines developed in our laboratory to explore the potential contribution of interleukin (IL)-6 and signal transducer and activator of transcription (STAT3) (key molecules in the intrinsic inflammatory pathway) to Barretts carcinogenesis. We determined IL-6 mRNA expression and protein secretion and protein expression of activated phospho-STAT3 and its downstream target myeloid cell leukemia (mcl)-1 (Mcl-1). We used an IL-6 blocking antibody and two JAK kinase inhibitors (AG490 and JAK inhibitor I) to assess whether STAT3 activation is IL-6 dependent. We also used small interfering RNAs (siRNAs) to STAT3 and Mcl-1 to assess effects of STAT3 pathway inhibition on apoptosis. Phospho-STAT3 was expressed only by transformed Barretts cells, which also exhibited higher levels of IL-6 mRNA and of IL-6 and Mcl-1 proteins than nontransformed Barretts cells. STAT3 phosphorylation could be blocked by IL-6 blocking antibody and by AG490 and JAK inhibitor I. In transformed Barretts cells, rates of apoptosis following exposure to deoxycholic acid were significantly increased by transfection with siRNAs for STAT3 and Mcl-1. We conclude that activation of the IL-6/STAT3 pathway in transformed Barretts epithelial cells enables them to resist apoptosis. These findings demonstrate a possible contribution of the intrinsic inflammatory pathway to carcinogenesis in Barretts esophagus.


Gut | 2014

In oesophageal squamous cells exposed to acidic bile salt medium, omeprazole inhibits IL-8 expression through effects on nuclear factor-κB and activator protein-1

Xiaofang Huo; Xi Zhang; Chunhua Yu; Qiuyang Zhang; Edaire Cheng; David H. Wang; Thai H. Pham; Stuart J. Spechler; Rhonda F. Souza

Objective Oesophagitis might result from the effects of chemokines produced by oesophageal cells in response to gastro-oesophageal reflux, and not solely from the direct, caustic effects of refluxed gastric juice. Proton pump inhibitors (PPI) can block chemokine production through mechanisms independent of their antisecretory effects. We studied omeprazole effects on chemokine production by oesophageal epithelial cells exposed to acidic bile salts. Design Human primary and telomerase-immortalised oesophageal squamous cells were exposed to acidic bile salt medium with or without omeprazole pretreatment. Interleukin (IL)-8 expression was determined by RT-PCR and ELISA. IL-8 promoter activity was measured by luciferase reporter assay. Binding of NF-κB and AP-1 subunits to the IL-8 promoter was assessed by chromatin immunoprecipitation (ChIP) assay. Immune cell migration induced by conditioned medium was determined by a double-chamber migration assay system. Results Acidic bile salt medium caused oesophageal epithelial cells to express IL-8 mRNA and protein by activating the IL-8 promoter through NF-κB and AP-1 binding. Omeprazole inhibited that acidic bile salt-stimulated IL-8 expression by blocking the nuclear translocation of p65 (an NF-κB subunit), and by blocking the binding of p65, c-jun and c-fos (AP-1 subunits) to the IL-8 promoter. Omeprazole also blocked the ability of conditioned medium from cells exposed to acidic bile salts to induce immune cell migration. Conclusions In oesophageal squamous epithelial cells, omeprazole inhibits IL-8 expression through effects on NF-κB and AP-1 that are entirely independent of effects on gastric acid secretion. These previously unrecognised PPI effects might contribute to the healing of reflux oesophagitis.


Gastroenterology | 2014

Autocrine VEGF Signaling Promotes Proliferation of Neoplastic Barrett's Epithelial Cells Through a PLC-Dependent Pathway

Qiuyang Zhang; Chunhua Yu; Sui Peng; Hao Xu; Ellen Wright; Xi Zhang; Xiaofang Huo; Edaire Cheng; Thai H. Pham; Kiyotaka Asanuma; Kimmo J. Hatanpaa; Davood Rezai; David H. Wang; Venetia Sarode; Shelby D. Melton; Robert M. Genta; Stuart J. Spechler; Rhonda F. Souza

BACKGROUND & AIMS Tumor cells express vascular endothelial growth factor (VEGF), which induces angiogenesis. VEGF also activates VEGF receptors (VEGFRs) on or within tumor cells to promote their proliferation in an autocrine fashion. We studied the mechanisms of autocrine VEGF signaling in Barretts esophagus cells. METHODS Using Barretts epithelial cell lines, we measured VEGF and VEGFR messenger RNA and protein, and studied the effects of VEGF signaling on cell proliferation and VEGF secretion. We studied the effects of inhibiting factors in this pathway on levels of phosphorylated phospholipase Cγ1 (PLCG1), protein kinase C, and extracellular signal-regulated kinases (ERK)1/2. We performed immunohistochemical analysis of phosphorylated VEGFR2 on esophageal adenocarcinoma tissues. We studied effects of sunitinib, a VEGFR2 inhibitor, on proliferation of neoplastic cells and growth of xenograft tumors in mice. RESULTS Neoplastic and non-neoplastic Barretts cells expressed VEGF and VEGFR2 messenger RNA and protein, with higher levels in neoplastic cells. Incubation with recombinant human VEGF significantly increased secretion of VEGF protein and cell number; knockdown of PLCG1 markedly reduced the recombinant human VEGF-stimulated increase in levels of phosphorylated PLCG1 and phosphorylated ERK1/2 in neoplastic cells. Esophageal adenocarcinoma tissues showed immunostaining for phosphorylated VEGFR2. Sunitinib inhibited VEGF signaling in neoplastic cells and reduced weight and volume of xenograft tumors in mice. CONCLUSIONS Neoplastic and non-neoplastic Barretts epithelial cells have autocrine VEGF signaling. In neoplastic Barretts cells, VEGF activation of VEGFR2 initiates a PLCG1-protein kinase C-ERK pathway that promotes proliferation and is self-sustaining (by causing more VEGF production). Strategies to reduce autocrine VEGF signaling (eg, with sunitinib) might be used to prevent or treat cancer in patients with Barretts esophagus.


Gastroenterology Clinics of North America | 2014

Eosinophilic Esophagitis: Interactions with Gastroesophageal Reflux Disease

Edaire Cheng; Rhonda F. Souza; Stuart J. Spechler

Gastroesophageal reflux disease (GERD) and eosinophilic esophagitis (EoE) are not mutually exclusive. The notion that GERD and EoE can be distinguished by the response to proton pump inhibitor (PPI) treatment is based on the mistaken assumption that gastric acid suppression is the only important therapeutic effect of PPIs, and therefore only GERD can respond to PPIs. We believe that a clinical or histologic response to PPIs does not rule in GERD or rule out EoE. We recommend a trial of PPI therapy for patients with symptomatic esophageal eosinophilia, even if the diagnosis of EoE seems clear-cut.


PLOS ONE | 2014

Proton pump inhibitors decrease eotaxin-3 expression in the proximal esophagus of children with esophageal eosinophilia.

Jason Y. Park; Xi Zhang; Nathalie Nguyen; Rhonda F. Souza; Stuart J. Spechler; Edaire Cheng

Objective Besides reducing gastric acid secretion, proton pump inhibitors (PPIs) suppress Th2-cytokine-stimulated expression of an eosinophil chemoattractant (eotaxin-3) by esophageal epithelial cells through acid-independent, anti-inflammatory mechanisms. To explore acid-inhibitory and acid-independent, anti-inflammatory PPI effects in reducing esophageal eosinophilia, we studied eotaxin-3 expression by the proximal and distal esophagus of children with esophageal eosinophilia before and after PPI therapy. In vitro, we studied acid and bile salt effects on IL-13-stimulated eotaxin-3 expression by esophageal epithelial cells. Design Among 264 children with esophageal eosinophilia seen at a tertiary pediatric hospital from 2008 through 2012, we identified 10 with esophageal biopsies before and after PPI treatment alone. We correlated epithelial cell eotaxin-3 immunostaining with eosinophil numbers in those biopsies. In vitro, we measured eotaxin-3 protein secretion by esophageal squamous cells stimulated with IL-13 and exposed to acid and/or bile salt media, with or without omeprazole. Results There was strong correlation between peak eosinophil numbers and peak eotaxin-3-positive epithelial cell numbers in esophageal biopsies. Eotaxin-3 expression decreased significantly with PPIs only in the proximal esophagus. In esophageal cells, exposure to acid-bile salt medium significantly suppressed IL-13-induced eotaxin-3 secretion; omeprazole added to the acid-bile salt medium further suppressed that eotaxin-3 secretion, but not as profoundly as at pH-neutral conditions. Conclusion In children with esophageal eosinophilia, PPIs significantly decrease eotaxin-3 expression in the proximal but not the distal esophagus. In esophageal squamous cells, acid and bile salts decrease Th2 cytokine-stimulated eotaxin-3 secretion profoundly, possibly explaining the disparate PPI effects on the proximal and distal esophagus. In the distal esophagus, where acid reflux is greatest, a PPI-induced reduction in acid reflux (an effect that could increase eotaxin-3 secretion induced by Th2 cytokines) might mask the acid-independent, anti-inflammatory PPI effect of decreasing cytokine-stimulated eotaxin-3 secretion.

Collaboration


Dive into the Edaire Cheng's collaboration.

Top Co-Authors

Avatar

Stuart J. Spechler

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rhonda F. Souza

Baylor University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xi Zhang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Xiaofang Huo

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

David H. Wang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Qiuyang Zhang

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Chunhua Yu

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Thai H. Pham

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kerry B. Dunbar

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sui Peng

Sun Yat-sen University

View shared research outputs
Researchain Logo
Decentralizing Knowledge